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Practical Significance of
Item Misfit in Educational
Assessments

Carmen Köhler1 and Johannes Hartig1

Abstract

Testing item fit is an important step when calibrating and analyzing item response theory (IRT)-
based tests, as model fit is a necessary prerequisite for drawing valid inferences from estimated
parameters. In the literature, numerous item fit statistics exist, sometimes resulting in contra-
dictory conclusions regarding which items should be excluded from the test. Recently, research-
ers argue to shift the focus from statistical item fit analyses to evaluating practical consequences
of item misfit. This article introduces a method to quantify potential bias of relationship esti-
mates (e.g., correlation coefficients) due to misfitting items. The potential deviation informs
about whether item misfit is practically significant for outcomes of substantial analyses. The
method is demonstrated using data from an educational test.
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To draw valid inferences from an item response theory (IRT) model, the fit of the model needs

to be assessed and evaluated (Embretson & Reise, 2000). Model misfit indicates that one or sev-

eral model assumptions are violated. In unidimensional IRT, these assumptions include local

stochastic independence between item responses and assumptions resulting from restrictions of

parameters of the item characteristic curves (ICCs), such as setting all discrimination parameters

equal to 1. In case of model misfit, the estimated ability and item parameters might be biased

and cannot be interpreted reliably (Wainer & Thissen, 1987; Yen, 1981). Testing model fit is

thus considered an important step when calibrating and analyzing IRT-based tests, as is docu-

mented in Standard 4.10 of the Standards for Educational and Psychological Testing (American

Educational Research Association, American Psychological Association, & National Council

for Measurement in Education, 2014).

Since no model perfectly fits any given data set, model misfit will always be present to some

degree (Box & Draper, 1987). The important question researchers frequently find themselves

confronted with revolves around how much misfit is acceptable. Swaminathan, Hambleton, and

Rogers (2006) identify two main steps for assessing model fit: (a) Testing underlying assump-

tions, and (b) comparing predictions of the model with observed values. On a purely statistical

1German Institute for International Educational Research (DIPF), Frankfurt, Germany

Corresponding Author:
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level, numerous tools for evaluating model fit exist (see, for example, Ames & Penfield, 2015;

Swaminathan et al., 2006). In educational assessments, commonly applied methods include dif-

ferential item functioning (DIF) analyses to evaluate item parameter invariance across groups,

testing for unidimensionality, comparing different scaling models, assessing reliability, and

scrutinizing item fit indices (see, for example, Organisation for Economic Co-Operation and

Development [OECD], 2012; Pohl & Carstensen, 2012). Practitioners often apply heuristics or

rules of thumb in order to evaluate the significance of any deviations from the expected out-

comes. With regard to item fit, such rules of thumb encompass the evaluation of item fit plots

and cutoff scores. The consequences of item misfit oftentimes involve the collapsing of cate-

gories of polytomous items, changing the phrasing of the item, or removing the item from the

test and/or the empirical analysis altogether.

In tests constructed under IRT, the strict model assumptions typically lead to at least some

items to be identified as misfitting. In some instances, even large percentages of items show bad

model fit. Having to remove items due to misfit is undesirable for test developers in several

aspects: For one, item development costs time and money; another important aspect concerns

the sufficient representation of the construct that is to be measured. Tests are often developed

according to a specific theory, and the generated item pool is supposed to cover certain aspects

of a construct. Each of these aspects (i.e., subdomains) are typically assessed via a limited num-

ber of items. If several items measuring a specific subdomain are removed because of model

misfit, this aspect can no longer be appropriately assessed if the number of items in the respec-

tive subdomain is insufficiently large. All in all, retaining items in the test is commonly desired.

Considering that item misfit is not necessarily relevant with regard to the test outcome, the

practice of removing items seems somewhat rash—especially in light of the ongoing debate

about the validity of many item fit statistics (see, for example, Ames & Penfield, 2015; Orlando

& Thissen, 2000; Swaminathan et al., 2006). The criticism mostly targets the validity of the

derived cutoff scores. Recent work by Hambleton and Han (2005), Molenaar (1997), as well as

Sinharay (2005) emphasizes the importance of looking beyond statistical significance of item fit

and focusing more on its practical significance. The assessment of model fit should be viewed

as a multifaceted process that also comprises an examination of the consequences of model mis-

fit (Hambleton & Han, 2005; Sinharay, 2005; Sinharay & Haberman, 2014). Practical conse-

quences pertain to the purpose of the test and the implications from the assessment. In high-

stakes assessments, for example, tests might function as a selection criterion for admission into

a certain program or educational institution. Sinharay and Haberman (2014) investigated data

from three educational tests that were used to derive cut scores, categorizing students according

to their competence levels: It was demonstrated that although item misfit was prevalent in all

data sets, their practical significance was minor: In two out of the three examples, the removal

of items resulted in negligible changes regarding the categorization of students. The authors pro-

pose that the decision of whether misfit is practically significant should be based on the change

in test outcomes, and conclude that the removal of items is unnecessary if it has no practical

relevance.

Note that Sinharay and Haberman (2014) focused on high-stakes testing, in which the accu-

racy of individual scores is of major importance. A study by van Rijn, Sinharay, Haberman,

and Johnson (2016) investigated practical significance of item misfit in the area of low-stakes

educational assessments. By low-stakes, the authors refer to tests where the assessment outcome

has no immediate individual consequences for the examinee. In low-stakes educational assess-

ments such as the Programme for International Student Assessment (PISA) or the National

Assessment of Educational Progress (NAEP), most analyses revolve around relationships

between competence and other variables or competence comparisons between groups. Van Rijn

et al. estimated subgroup means and the percent of examinees at different ability levels to
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investigate practical significance of item misfit. The outcomes of these estimates were com-

pared when misfitting items were kept in the measurement model versus when they were

excluded from the model. Like Sinharay and Haberman (2014), they found that item misfit

hardly impacted the outcome.

Note that in both studies on practical significance—Sinharay and Haberman (2014) and van

Rijn et al. (2016)—the investigation regarding practical significance of item misfit was con-

ducted separately for each of their empirical examples. Testing practical significance for each

outcome of interest can be a quite demanding and cost consuming task. Up to date, no general

approach exists to evaluate practical significance of misfitting items in educational tests, and no

software program reports influences of misfitting items on important outcome variables. In this

article, a method to assess consequences of keeping misfitting items in a low-stakes achieve-

ment test is proposed. The focus of this study lies on tests that are primarily used to compare

competences across groups or to analyze relationships between competences and other vari-

ables. In most instances, these relationships are investigated through the analysis of variance

components, for example, ANOVA, regression analysis, or correlation coefficients. Results

from such analyses allow evaluating the size and significance of the relationship between vari-

ables. The correlation coefficient—and the according R-squared—is especially relevant for

evaluating whether the relationship between two variables is substantial. The authors argue that

if the correlation coefficient significantly changes due to misfitting items in the model, item

misfit is practically significant. The authors consider a change in the correlation coefficient as

significant when inferences on substantial research questions are altered, for example, if the

estimated size of the relationship between ability and a covariate is distorted by including mis-

fitting items in the measurement model so that an actually existing medium size relationship

decreases to a low size relationship.

A general approach—applicable to any competence test—is offered to evaluate potential bias

in the correlation coefficient when misfitting items are kept in the analysis. Note that the reader

can choose which item fit statistics to use, and the debate on the most appropriate item fit statis-

tic is disregarded in the current article. This study’s approach is basically an additional aspect in

the process of evaluating model fit, and picks up after the researcher has decided—based on sta-

tistical item fit analyses and closer inspection of the items—which items might potentially be

removed from the test. The approach can be used even when covariates of interest have not been

assessed yet, for example, in trial administrations of new tests.

The next section describes this study’s approach in detail for the Rasch model (Rasch, 1960),

followed by a short description of its generalization to the two-parameter logistic (2PL) model

(Birnbaum, 1968). A small simulation that illustrates which factors influence the potential

change of the correlation coefficient is subsequently provided. The authors then give an empiri-

cal example, demonstrating the effectiveness of the approach in evaluating practical significance

of item misfit. Note that an R code was developed for easy implementation of this study’s

method (see the Online Appendix).

Method

Approach for Rasch Model

To evaluate whether the exclusion of several items has an impact on any analysis of substantive

interest, the researcher could simply compare the parameters of interest from the model where

misfitting items are included in the measurement model for ability and the model where misfit-

tings items are removed from the measurement model for ability. For example, if the substan-

tive research question concerned the relationship between ability in mathematics and interest in
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mathematics, the correlation (or standardized regression coefficient) between ability and inter-

est in mathematics could be calculated (a) using only fitting items in the measurement model

for ability, so that the latent ability variable, uF, is based on the response indicators of all fitting

items, xij, where i indexes the items from i = 1, . . . , Ix, and j indexes the persons from

j = 1, . . . , N . Another option (b) for obtaining the correlation coefficient between ability and

interest in mathematics is to include the total number of items, that is, the fitting items, xij, as

well as the misfitting items, mij, in the measurement model for ability, uT. The index for the

misfitting items runs from i = 1, . . . , Im. The difference between the two obtained correlation

coefficients indicate how much the parameter of interest, that is, the correlation coefficient, is

influenced by the presence of misfitting items.

As this procedure has very limited generalizability and would require a new interpretation of

practical significance of item misfit for each research question, a mathematical approach that

allows establishing the potential bias in the correlation coefficient for all possible values of

r(uF, Z), and therefore all possible covariates, Z, is proposed. The fact that the approach of deter-

mining practical significance is applicable irrespective of the observation of Z is especially con-

venient for pretest situations, which sometimes lack the assessment of the covariates of interest,

as they are often only assessed in subsequent main studies.

The underlying idea of this study’s approach is based on the decomposition of variance com-

ponents. The inclusion of misfitting items affects the variance of the latent variable as well as

its correlation with the covariate. The potential change in the correlation coefficient is limited

to a certain range, however, which can be mathematically computed. The minimum and maxi-

mum change depends on the amount of additional variance that is induced by the misfitting

items, on the amount of misfitting items relative to the fitting items, and on the strength of the

relationship between the latent variable and the covariate. Let uM denote the latent ability vari-

able with item indicators mij of the misfitting items. Given the covariance between uF and uM,

the standard deviation of both variables, suF and suM , and the standard deviation of the covari-

ate Z, sz, it is possible to calculate the minimum and maximum change of the correlation coef-

ficient if the item indicators mij are included in measuring ability. For means of identification,

the number of misfitting items needs to exceed 2 under the Rasch model and 3 under the 2PL

model; apart from these conditions, this study’s approach is generalizable to any amount of

misfitting items. Note that in most settings, the assumption that the misfitting items measure a

single latent dimension, uM, will probably not hold. However, making this assumption means

that the inclusion of the misfitting items can have the maximum impact on the correlation with

Z. Thus, the assumption of all mij measuring a single dimension was used as as a worst case

scenario to calculate the possible range of changes in r(uF, Z). If responses to mij are multidi-

mensional, or if all mij are uncorrelated even, the impact on r(uF, Z) will be smaller.

The minimum and maximum correlations, rminðuT, ZÞ and rmaxðuT, ZÞ, occur in the extreme

cases in which the residual of Z—after conditioning Z on uF—perfectly explains the residual of

uM—after conditioning uM on uF. That is, r(uM, ZuF) = 61, or rather, the partial correlation

pr(uM, Z)6 1. The direction of the partial correlation pr(uM, Z) can be contrary to the correla-

tion r(uF, Z), since the misfitting items might measure something completely different from

what the fitting items measure. They might measure a different ability dimension or have a low

discrimination: For whatever reason they were flagged misfitting, the additional variance they

bring to the ability variable, uT, might differently depend on Z than the ability measured by

only the fitting items, uF. That is to say, the correlation between uM and Z might differ from the

correlation between Z and uF, and this correlation has certain predictable limits. Given

rmin (uT, Z) and rmax (uT, Z), the minimum and maximum change in r(uT, Z) can be calculated. In

the following, the authors first describe how to compute rmin (uM, Z) and rmax (uM, Z). The computa-

tion of rmin and rmax is described thereafter.
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Estimating rmin (uM, Z) and rmax (uM, Z). To calculate the minimum and maximum change of

r(uT, Z), rmin (uM, Z) and rmax (uM, Z) first need to be computed. Because established rules for such

computations already exist for manifest variables, they are provided first. They are easily

transferable to the latent variable context, considering that the latent variable is typically

measuring a single, unidimensional trait and each person can be assigned their respective trait

level.

For the manifest context, let Y F represent uF, Y M represent uM, and Y T represent uT. Given the

three manifest variables Y F, Y M, and Z with known correlations between r(Y F, Z) and

r(Y F, Y M), the minimum and maximum r(Y M, Z), and, subsequently, the minimum and maxi-

mum r(Y T, Z), can be computed under the condition that the partial correlation between Y M

and Z is constricted to the range between 21 and 1, that is,

� 1 � prY MZ =
srY MZffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

Y FZ

q � 1, ð1Þ

where srY MZ is the semi partial correlation between Y M and Z,

srY MZ =
rY MZ � rY MY F rY FZffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2
Y MY F

q : ð2Þ

Equation 1 can be solved for rY MZ , with prY MZ = � 1 and prY MZ = 1, respectively. Thus, the min-

imum and maximum correlation between Y M and Z is given by

rmin Y M, Zð Þ = �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

Y MY F

q� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

Y FZ

q
+ r2

Y MY F r2
Y FZ , ð3Þ

rmax Y M, Zð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

Y MY F

q� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

Y FZ

q
+ r2

Y MY F r2
Y FZ : ð4Þ

Estimating rmin (uT , Z) and rmax (uT, Z). As this study’s main interest does not lie in the minimum

and maximum correlation between Z and uM but between Z and uT, the next step involves

calculating the minimum and maximum correlation between Z and Y T. To obtain this

minimum and maximum correlation, the minimum and maximum covariance between Z and

Y T were calculated first. Note that the items measuring uT are the items measuring uF plus the

items measuring uM. In the manifest case, Y T can be expressed as a function of Y F and Y M,

such that Y T = Y F + Y M. The covariance between an aggregated variable and a third variable

can generally be calculated as

cov X + Y , Zð Þ= cov X , Zð Þ+ cov Y , Zð Þ: ð5Þ

The variance of the aggregated variable is given by

var X + Yð Þ= var Xð Þ+ var Yð Þ+ 2cov X , Yð Þ: ð6Þ

Keep in mind, however, that the latent variables uM and uF differently contribute to uT, since

the number of items varies between the two latent variables. To put Y M and Y F on the same

scale, weight w is applied, which is calculated by dividing the number of misfitting items mij

by the number of fitting items xij, to the standard deviation of Y M.

SD Y M
� �

adj
= SD Y M

� �
w = SD Y M

� �Number of misfitting items

Number of fitting items
: ð7Þ
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The minimum and maximum cov(Y T, Z) (see Equation 5) is then given by

covmin Y T, Zð Þ = rmin Y M, Zð ÞSD Y M
� �

adj
SD Zð Þ+ r Y F, Z

� �
SD Y F
� �

SD Zð Þ, ð8Þ

covmax Y T, Zð Þ = rmin Y M, Zð ÞSD Y M
� �

adj
SD Zð Þ+ r Y F, Z

� �
SD Y F
� �

SD Zð Þ, ð9Þ

where the product on the left of the plus sign constitutes covmin (Y M, Z) and covmax (Y M, Z), respec-

tively; the product on the right of the plus sign equals cov(Y F, Z).

The minimum and maximum correlation between uT and Z can then be computed as

r
min uT, Zð Þ =

covmin Y T, Zð Þ
SD Y Tð ÞSD Zð Þ , ð10Þ

r
max uT, Zð Þ =

covmin Y T, Zð Þ
SD Y Tð ÞSD Zð Þ , ð11Þ

where the standard deviation of Y T is given by

SD Y T
� �

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var Y Tð Þadj

q
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SD Y Tð Þ2adj + SD Y Fð Þ2 + 2wcov Y F, Y Mð Þ

q
: ð12Þ

In sum, all calculations can be realized given cov (uF, uM), cov (uF, Z), SD(uM), SD(uF), and

SD(Z). Furthermore, letting Z be a standardized variable with SD(Z) = 1, only cov (uF, uM),

SD(uM), and SD(uF) need to be estimated in order to establish rmin (uT, Z) and rmax (uT, Z) for all

possible values of cov (uF, Z). Thus, the only model to estimate is a two-dimensional Rasch

model, where uF and uM constitute the first and second dimension, respectively (see Figure 1).

The likelihood equation for the between-item multidimensional Rasch model is given by

L =
YN
j = 1

YIx

i = 1

p xijjuF
j , bi

� �YN
j = 1

YIm

i = 1

p mijjuM
j , di

� �
, ð13Þ

where bi and di are the item difficulty parameters for the fitting and misfitting items,

respectively.

Take, for example, a test where five out of 20 items show misfit according to an arbitrary

item fit index. The two-dimensional Rasch model would include the 15 fitting items measuring

the first dimension, uF, and the five misfitting items measuring the second dimension, uM.

Using the estimated parameters cov (uF, uM), SD(uM), and SD(uF), rmin (uT, Z) and rmax (uT, Z) can

be calculated for each possible r(uF, Z), thus supplying the boundaries of the minimum and

maximum change in the parameter of interest—that is, the correlation coefficient—if the five

items that were formerly identified as misfitting are included. The sizes for rmin (uT, Z) and

rmax (uT, Z) are good indicators as to how much the standardized regression coefficient potentially

changes due to the inclusion of the misfitting items.

Approach for 2PL Model

The previously described method for obtaining the minimum and maximum change in the corre-

lation coefficient when misfitting items are included in the model is easily transferable to 2PL

models. Instead of estimating a between-item multidimensional Rasch model, a between-item

multidimensional model that allows for varying item discrimination parameters should be used

(see, for example, Adams & Wu, 2007; Muraki, 1992). Such a model is identified by fixing the
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variance of both latent dimensions to 1. The relevant parameters for calculating rmin (uT, Z) and

rmax (uT, Z) are thus the discrimination parameters of all items and cov (uF, uM). The discrimina-

tion parameter estimates are necessary to obtain the weight w. Compared with the Rasch model,

where each item equally contributes to measuring the latent variable, the contribution from each

item in the 2PL model is determined by its discrimination parameter. In the step of combining

Y F and Y M, the relation of how much each item contributes to measuring uT is contained by

adjusting SD(Y M) (see Equation 7). The weight w for the adjustment with regard to the 2PL

model is computed by dividing the sum of all discrimination parameters of items mij, measuring

uM, by the sum of all discrimination parameters of items xij, measuring uF. Besides the different

computation of w, the computation of rmin (uT, Z) and rmax (uT, Z) is equal for the Rasch and the 2PL

model.

Simulation

The potential change in r(uF, Z) depends on r(uF, Z) itself, the amount of misfitting items rela-

tive to the fitting items, and on r(uF, uM). To illustrate this, four examples varying (a) the

amount of misfitting items (few vs. many) and (b) the size of the correlation between uF and uM

(low vs. high) were simulated. Four data sets with N = 1,000 each were generated. In the first

two data sets, the number of items per dimension were Ix = 20 and Im = 4, thus presenting an

example with only few misfitting items; in the last two data sets, the number of items were Ix =

20 and Im = 20, thus presenting an example where many items show misfit. Data Sets 1 and 3

were simulated under no correlation between uF and uM; Data Sets 2 and 4 were simulated under

r(uF, uM) = .8. The R function was subsequently used (see the Online Appendix) to calculate

rmin (uT, Z) and rmax (uT, Z) under the Rasch model for 11 equally spaced values between r(uF, Z) =

21.0 and r(uF, Z) = 1.

The results of these analyses are displayed in Figure 2. The possible change in r(uF, Z) is

highest for r(uF, Z) = 0, and decreases as the correlation between uF and Z increases. A compar-

ison between the top and the bottom row of Figure 2 shows that the possible change in r(uF, Z)

is greater for higher amounts of misfitting items. The comparison between the first and the sec-

ond column of Figure 2 illustrates that the possible change in r(uF, Z) decreases as the correla-

tion between uF and uM increases. However, this effect is much weaker in the condition with

Figure 1. Between-item multidimensional IRT model with item indicators from fitting items, xij, loading
on uF, and item indicators from misfitting items, mij, loading on uM.
Note. IRT = item response theory.
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many misfitting items. This indicates that the size of the correlation becomes a less important

factor when the amount of misfitting items is large.

Data Example

Method

Data from a pilot study were used to illustrate the applicability of the proposed method. The

study was developed to assess different competence areas of German and English as a for-

eign language of ninth graders in Germany (DESI-Konsortium, 2008). The present data

example, the subdomain German Communication and Argumentation, consisted of 28

dichotomously and polytomously scored items. The sample size in the pilot study comprised

N = 529 students.

Figure 2. Minimum and maximum change in the regression coefficient when misfitting items are
included in the measurement model for varying levels of the amount of misfitting items and the size of
correlation between the latent variable containing only fitting items, uF, and the latent variable containing
the misfitting items, uM.
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In a first step, a Rasch model including all items was estimated and the weighted mean

square (WMNSQ) item fit indices were calculated using the package TAM (Kiefer, Robitzsch,

& Wu, 2014) in the open source software R (R Core Team, 2016).1 The WMNSQ is a residual

based item fit statistic; Wu, Adams, Wilson, and Haldane (2007) developed it based on the Infit

(see Wright & Masters, 1982). A value of 1.15 was chosen as critical for item misfit, and all

items with a WMNSQ .1.15 were considered misfitting.2 The two-dimensional Rasch model

was subsequently estimated with the fitting items loading on uF and the misfitting items loading

on uM. After estimating the weight w and choosing 11 equally spaced values between r(uF, Z)

= 21 and r(uF, Z) = 1, w, r(uF, Z), and the estimated parameters cov (uF, uM), SD(uM), and

SD(uF) were inserted into Equations 3, 4, and 7 to 12. The resulting rmin (uT, Z) and rmax (uT, Z)

inform about the minimum and maximum change of the 11 arbitrarily chosen values for

r(uF, Z). In a last step, Mplus 7.4 (Muthén & Muthén, 2012) was used to calculate the standar-

dized regression coefficient r(uF, Z) when regressing ability on 10 covariates from the data

sample, estimated rmin (uT, Z) and rmax (uT, Z) for these 10 regression coefficients, and finally esti-

mated the respective r(uT, Z) to examine whether the standardized regression coefficient when

including the missing values in the measurement model actually lay within the predicted inter-

vals. Four dichotomous covariates (gender, possession of own room, any books read within the

last quarter, currently reading a book), three ordinal covariates (books for Christmas, asking

about an unfamiliar word, parental expectations for graduate degree), which were rescaled into

dichotomous variables by collapsing the first two and final two categories, respectively, as well

as three continuous covariates (learning for German, attitude toward reading, reading for fun)

were investigated. To obtain the scale scores for the continuous covariates, the ordinal

items measuring the respective construct by calculating their mean were combined. Examinees

with a missing value on any of the 10 covariates were excluded from the analysis, which

resulted in N = 396 students.3

Results

Under the Rasch model, the WMNSQ of four out of the 28 items measuring German

Communication and Argumentation exceeded 1.15. A two-dimensional between-item model with

all 24 fitting items loading on uF, and the four misfitting items loading on uM was estimated (see

Figure 1 and Equation 13). The two dimensions correlated at r(uF, uM) = .027, with a covariance

of cov (uF, uM) = 0.003, and standard deviations SD(uF) = 0.829 and SD(uM) = 0.126. Based on

these estimates, the minimum and maximum r(uT, Z) for each r(uF, Z) = 21.0, 20.8, . . . , 1 were

calculated. For this purpose, Z was assumed to be standardized, with SD(Z) = 1. According to

Equations 3 and 4, the minimum and maximum correlation between Y M and Z, with

r(uF, uM)2 = :0272 = :001, and r(uF, Z)2 = 21.02, 20.82, . . . , 12 were first computed. According

to Equations 7 to 12, the adjusted standard deviation SD(Y M)adj, the minimum and maximum cov-

ariances between Y M and Z, SD(Y T), and finally the minimum and maximum correlation between

the latent ability variable measured by all items, uT, and the covariates Z were calculated. The

results are displayed in Figure 3. The figure also shows the standardized regression coefficient

when regressing ability on the 10 covariates for both the model excluding (x axis) and the model

including the misfitting items (y axis). As is evident from the figure, the estimated coefficients

r(uT, Z) lay within the computed minimum and maximum boundaries rmin (uT, Z) and rmax (uT, Z).

Note that the minimum and maximum possible change in the standardized regression coeffi-

cient when the misfitting items were included was rather small. The possible discrepancy

between r(uT, Z) and r(uF, Z) was greatest for no correlation and small to medium sized correla-

tions between the explanatory variable and the latent ability. Overall, the potential changes of
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the standardized regression coefficient were quite small and the inclusion of the misfitting items

seems rather negligible: Inferences drawn from regressing ability in German Communication

and Argumentation on covariates remain the same when misfitting items are included in the

latent regression model.

Discussion

The goal of this article was to introduce a method that assists in determining practical signifi-

cance of item misfit in educational low-stakes large-scale assessments. Testing the substantial

consequences of item misfit should be an integral part of assessing model fit (Hambleton &

Han, 2005). The proposed method is based on basic mathematical principles regarding correla-

tions, and can be applied routinely to any sort of test that involves analyses of relationships.

Thus far, hardly any approaches assessing practical significance of item misfit existed.

Compared with the approach by van Rijn et al. (2016), who specifically compared relevant

outcomes when misfitting items were either included in the measurement model or not, a major

advantage of the proposed method lies in its generalizability. In the R function (see the Online

Appendix), only the item response data, the misfitting items, and the IRT model need to be

specified, and it returns the minimum and maximum potential change in the correlation coeffi-

cient for possible correlations between 21 and 1. These potential changes apply to any variable

that might be of interest. This is especially valuable for trial administrations of tests (i.e., pret-

ests). In the pretest, relevant covariates are not always part of the assessment. Using the pro-

posed method, potential consequences of misfitting items on contextual analyses can be

evaluated nevertheless. It also works in large-scale assessments with a multi-matrix data sam-

pling approach, since parameters of an IRT model are well approximated even if some items

are missing by design. This also holds for the proposed approach, which is based on a multidi-

mensional latent regression IRT model. As long as the misfitting items from different booklets

Figure 3. Change in regression coefficient when misfitting items are included in the measurement
model for German communication and argumentation.
Note. The points represent the minimum and maximum change of r(uF, Z). The lines connect the 11 calculated

rmin uT , Zð Þ (bottom line) and rmax uT , Zð Þ (top line), respectively. The crosses mark the estimated r(uF, Z)—on the x

axis—and r(uT, Z)—on the y axis—when regressing competence on the ten covariates.
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measure the same trait (e.g., reading literacy), they can be grouped together and the influence

of the misfitting items when regressing reading literacy on a covariate can be computed.

Furthermore, the approach is generalizable to any scenario where researchers are interested in a

potential change of the strength or direction of the relationship between two variables when the

scope of the items measuring the latent variable changes. The potential change pertains to the

parameter estimate given the respective latent measurement model the researcher chose to answer

his research question with. Keep in mind that the calculated minimum and maximum values

should be considered the worst cases, meaning that the (misfitting) items added to measuring the

construct of interest differently relate to the covariate than the rest of the items. In cases where the

items add no additional information to measuring the latent variable and only produce measure-

ment error, their consequence on the estimated relationship with a covariate is limited.

The gain of retaining items that were pronounced misfitting depends on the purpose of the

test. Certainly, an item that only produces irrelevant noise in the data, that has been translated

improperly, or that simply lies outside the examinees’ ability range should be altered or

removed from the test. The authors neither promote that investigating why items have a poor

item fit becomes unnecessary, nor do they intend for their method to replace any of the existing

methods. In some situations, however, the reason for item misfit is unclear and the test develo-

pers might be reluctant to delete an item for reasons of construct representation. The proposed

method allows examining how the misfit influences relevant outcomes, thus giving an addi-

tional option of evaluating item and model fit. Another criterion for evaluating whether the

items can be kept in the measurement model is to compare the reliability of the test when mis-

fitting items are included in the test or not. A decrease in reliability after the removal of misfit-

ting items could be regarded as a reason to keep them despite of the misfit.

An important finding from the empirical example is the robustness of the correlation coeffi-

cient against violations of model fit. Not only was the potential change of the standardized

regression coefficient rather small, but the actual change when misfitting items were included

in the model was even lower. Certainly, these results are restricted to the presented data exam-

ple. As the simulated data examples show, the potential change might be greater for tests with

relatively larger amounts of misfitting items and more dissimilarity between misfitting and fit-

ting items. In cases where the potential change is large, keep in mind that the potential change

should be considered the worst case scenario and that the actual parameter change lies some-

where in between the calculated boundaries. Therefore, large potential changes do not necessa-

rily mean that the misfit is practically significant for all possible research questions, but makes

it more likely. If a researcher wants to know the actual practical significance regarding a spe-

cific research question, the relevant outcome parameters need to be compared when the misfit-

ting items are included in the measurement model or not.

So far, the presented approach is only applicable for bivariate analyses in which the explain-

ing variable is either continuous or binary. This limits statements regarding multiple group

comparisons, which are typically relevant in large-scale assessments such as NAEP or PISA.

Furthermore, it would be interesting to apply the approach to more complex research questions

which require, for example, multilevel models, latent multiple regression models, or multidi-

mensional models. For other study designs such as computer adaptive testing (CAT), item fit

might play a more crucial role. Practical significance for CAT goes beyond changes in the para-

meters that measure relationships, as the reliability and validity of a single item or several items

play a role in which items will be presented to the individual. Thus, item misfit needs to be

evaluated in terms of changes in item presentation when misfitting items remain in the test, and

whether this change has an effect on crucial outcomes.

Finally, note that the presented method is not restricted to the area of item fit. It is a general

method that allows estimating the minimum and maximum possible change in a correlation
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coefficient (or standardized regression coefficient) if some of the items are kept in the measure-

ment model. It can thus be applied in any scenario where decisions on dropping items from a

test have to be made.
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Notes

1. The same analyses were conducted using the two-parameter logistic (2PL) model, calculating the

weight according to the estimated discrimination parameters. As the results hardly differed, only the

analyses with the Rasch model were reported here.

2. The chosen cutoff score is arbitrary. The literature gives no definite answer on an adequate cutoff score

for the weighted mean square (WMNSQ; see, for example, Linacre, 2003; Wu, 1997).

3. Certainly, listwise deletion is one of the least favorable methods for dealing with missing values. As

our study refrains from any substantive claims and the data purely serve to demonstrate the proposed

method, the simplest missing data approach was used.
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