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Abstract 

The present study investigates the empirical separability of mathematical (a) content 

domains, (b) cognitive domains, and (c) content-specific cognitive domains. 122 items 

representing two content domains (linear equations vs. theorem of Pythagoras) combined 

with two cognitive domains (modeling competence vs. technical competence) were 

administered in a study with 1,570 German ninth graders. A unidimensional IRT model, two 

two-dimensional MIRT models (dimensions: content domains and cognitive domains, 

respectively), and a four-dimensional MIRT model (dimensions: content-specific cognitive 

domains) were compared with regard to model fit and latent correlations. Results indicate that 

the two content and the two cognitive domains can each be empirically separated. Content 

domains are better separable than cognitive domains. A differentiation of content-specific 

cognitive domains shows the best fit to the empirical data. Differential gender effects mostly 

confirm that the separated dimensions have different psychological meaning. Potential 

explanations, practical implications, and possible directions for future research are discussed. 

Keywords: assessment; mathematical competence; content domain; cognition  
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Separating Cognitive and Content Domains in Mathematical Competence  

 The assessment of competencies plays a key role in advancing educational programs, 

institutions, or systems, optimizing educational practices, and supporting individual learning 

processes (Koeppen, Hartig, Klieme, & Leutner, 2008). In particular on the individual level, 

competence assessment should be sufficiently differentiated to help teachers identify 

students’ strengths and weaknesses, adapt instruction, react to individual needs, provide 

differentiated feedback, and in doing so, support students’ learning processes (e.g., Black & 

Wiliam, 1998; Wiliam, 2006). The advantage of information gained from differentiated 

against general assessment has been demonstrated in previous research ranging from 

methodological considerations of subscore profiles (Haberman & Sinharay, 2010; Sinharay, 

2010), empirical comparisons of multi- and unidimensional IRT-based ability estimates (e.g., 

Walker & Beretvas, 2003) to experimental investigations of differentiated competence 

feedback (e.g., Harks, Rakoczy, Hattie, Besser, & Klieme, 2014; Rakoczy, Harks, Klieme, 

Blum, & Hochweber, 2013). What kind of differentiation should be used to meaningfully 

classify assessment outcomes, however, remains an open question.  

 Following Bloom’s taxonomy of learning goals (1956; see also Anderson & 

Krathwohl, 2001), Csapó’s dimensions of learning goals and knowledge (2010), assessment 

frameworks of large scale assessments like PISA (Programme for International Student 

Assessment; OECD, 2009a) and TIMSS (Trends in International Mathematics and Science 

Study; Mullis, Martin, Ruddock, O'Sullivan, & Preuschoff, 2009), and considering Borg’s 

facet theory (1986), performance outcomes can be theoretically categorized with regard to (a) 

content domains, (b) cognitive domains, or (c) both (i.e., differentiated with regard to content-

specific cognitive domains). The present study pursues the question whether the three 

classifications – (a) content-, (b) cognitive-, or (c) content  cognitive-specific – can be 

empirically supported for an internal differentiation of mathematical competence.  
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 A differentiation with regard to (a) content domains originally results from the 

traditional approach to teaching in which transfer of content knowledge (e.g., knowledge 

about algebra, geometrics etc.) has been the central goal for centuries. Considering the 

increasing speed of changes in modern society, rapid developments in technology, and 

growing requirements for lifelong learning, a content-oriented educational approach alone is 

insufficient (e.g., Csapó, 2010). To educate inventive, creative people who are able to apply, 

adapt, and extend their content knowledge, the training and support of (b) cognitive domains 

such as problem solving, spanning across content domains, is pivotal. In school subjects such 

as mathematics, however, cognitive domains are regularly taught and assessed in 

combination with content domains. This is reflected in the notion of competencies, defined as 

“cognitive dispositions that are acquired by learning and needed to successfully cope with 

certain situations or tasks in specific domains” (Klieme, Hartig, & Rauch, 2008, p. 9; see 

also, e.g., McClelland, 1973; Weinert, 2001). Thus, competencies refer to (c) content-specific 

cognitive domains. Theoretically, the scope of competencies can vary from highly specific to 

broadly conceptualized constructs (see e.g., Weinert, 2001). Empirically, the content-

specificity vs. generalizability of cognitive domains in mathematics, however, has been little 

investigated so far.  

 In sum, considering the described change in perspective – shifting from contents 

towards rather cognitive or content-specific cognitive aspects – the aim of the present study is 

to pursue the question whether mathematical competence should be differentiated with regard 

to (a) content-, (b) cognition-, or (c) content- and cognition-specific categories.  

Dimensionality of Mathematical Competence 

 In the following, previous results on the separability of mathematical content domains 

(section “Content domains in mathematics”) and cognitive domains (section “Cognitive 

domains in mathematics”) are presented. Subsequently, the section “Comparison of content 
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and cognitive domains in mathematics” focuses on studies that directly compare the 

empirical differentiability of content and cognitive domains. Finally, findings on the 

separability of content-specific cognitive domains are reported (section “Content-specificity 

of cognition in mathematics”). 

 Content domains in mathematics. 

 (a) Number and operations, (b) algebra, (c) geometry, (d) measurement, and (e) data 

analysis and probability are examples for content domains1 traditionally used to structure the 

mathematics curriculum (NCTM, 2000), and explicitly considered in test development and 

data analysis of large scale assessments like TIMSS (e.g., Mullis et al., 2009). An alternative 

categorization of mathematical content domains is given in the assessment framework of 

PISA, distinguishing (a) change and relationships, (b) space and shape, (c) quantity, and (d) 

uncertainty, referred to as overarching ideas (OECD, 2003) or mathematical content 

knowledge (OECD, 2013).  

 The separability of mathematical content domains was studied with exploratory and 

confirmatory factor analyses (e.g., Young et al., 2008) and models of multidimensional item 

response theory (MIRT; Blum et al., 2004; Brunner, 2006; Klieme, 2000; Liu, Wilson, & 

Paek, 2008). MIRT models differentiating between mathematical content domains yielded a 

better fit than unidimensional models. Latent correlations between content-specific 

dimensions ranged from .77 to .91 (Blum et al., 2004; Brunner, 2006; Klieme, 2000; Liu et 

al., 2008). Klieme (2000), for example, analyzed the multidimensionality of analysis, 

geometry, and numbers, equations, and functions in the TIMSS Advanced Mathematics Test 
                                                           

1 Content domains can be specified at different levels (i.e., with different grain size), such as 

mathematics versus science (subject), algebra versus geometry (content area), or linear equations versus 

theorem of Pythagoras (content unit). The present paper does not deal with the subject level, as it is focused on 

mathematics. In our research review, the term content domain is used for mathematical areas as well as units, 

whereas our own study focuses on two specific content domains defined on the level of units.  
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and found latent correlations ranging from .77 (between analysis and geometry) to .81 

(between numbers, equations, and functions and both analysis and geometry). Indirect 

evidence for the separability of mathematical contents results from studies showing varying 

gender differences across content domains. The meta-analysis of Hyde, Fennema, and Lamon 

(1990), for example, revealed that boys and girls do equally well in arithmetic or algebra, 

whereas boys outperform girls in geometry (see also Liu et al., 2008 for the gender effect in 

geometry).2 

Cognitive domains in mathematics. 

A broadly accepted and influential categorization of cognitive domains in 

mathematics was provided by Niss (2003). He distinguished the domains of: (a) thinking 

mathematically, (b) posing and solving mathematical problems, (c) modeling mathematically, 

(d) representing mathematical entities, (e) handling mathematical symbols and formalisms, 

(f) communicating in, with, and about mathematics, (g) making use of aids and tools, and (h) 

reasoning mathematically. Niss’s categorization was adopted in the assessment framework 

for mathematical literacy applied in PISA 2003-2009 (referred to as mathematical 

competencies, e.g., OECD, 2003, 2009a). In the latest revision of the PISA assessment 

framework (OECD, 2013), Niss’s domains (more precisely, a slightly modified version of 

them) are defined as fundamental capabilities underlying broader so-called cognitive 

processes, namely, (a) formulating situations mathematically, (b) employing mathematical 

concepts, facts, procedures, and reasoning, and (c) interpreting, applying, and evaluating 

                                                           
2 It should be noted that other findings also exist. In contrast to Hyde et al. (1990), findings from the 

TIMSS context (Mullis, Martin, & Foy, 2008) show an advantage of boys in the content domain of number 

sense, but not in geometry. Adversely, girls outperformed boys in geometry, data and chance, and algebra. The 

superiority of girls in algebra has also been demonstrated by Kaiser and Steisel (2000, also based on TIMSS-

data) and in the meta-analysis of Lindberg, Hyde, Petersen, and Linn (2010). 
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mathematical outcomes. Finally, the TIMSS study discriminates the cognitive domains of (a) 

knowing, (b) applying, and (c) reasoning (Mullis et al., 2009).  

Results on the dimensionality of mathematical cognitive domains are less clear than 

those on the empirical separability of content domains. Whereas some researchers using 

exploratory and/or confirmatory factor analyses separated multiple factors indicating 

different categories (e.g., Gustafsson, 1994; Kupermintz & Snow, 1997; Vasilyeva, Lodlow, 

Casey, & St. Onge, 2008), others demonstrate the superiority of a unidimensional solution 

(Lane, Stone, Ankenmann, & Liu, 1995; Rittle-Johnson, Matthews, Taylor, & McEldoon, 

2011). Studies modeling cognitive components with MIRT models show a better model fit of 

multidimensional in comparison to unidimensional models (Brunner, 2006; Klieme, 2000; 

Wu & Adams, 2006), but relatively high latent correlations ranging from .79 to .97 (Blum et 

al., 2004; Brunner, 2006; Haberman & Sinharay, 2010; Klieme, 2000; Walker & Beretvas, 

2003; Wu & Adams, 2006). Blum and colleagues (2004), for example, applied a three-

dimensional IRT model to investigate the empirical separability of computational modeling, 

conceptual modeling, and technical operations in a national enhancement to the PISA test 

and found latent correlations of .89 (between computational modeling and both conceptual 

modeling and technical operations) and .96 (between computational and conceptual 

modeling). Indirect empirical evidence for the discriminability of mathematical competencies 

was provided by studies demonstrating differential gender effects for different cognitive 

domains. It was, for example, shown that male students outperformed female students in 

complex problem solving tasks (e.g., Hyde et al., 1990; Lindberg et al., 2010) and word 

problems (Ryan & Chiu, 2001), whereas for other cognitive domains no or (comparatively) 

small gender differences were reported (e.g., Hyde et al., 1990; Lindberg et al., 2010). 
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Advantages of women were frequently shown for the domain of computation (e.g., Hyde et 

al., 1990).3 

Comparison of content and cognitive domains in mathematics. 

We know of only five studies that directly compared the separability of cognitive and 

content domains. Each of these studies provides evidence for a better empirical 

discriminability of content domains. Blum et al. (2004) as well as Klieme (2000) and 

colleagues (Klieme, Neubrand, & Lüdtke, 2001) applied MIRT models and found that in 

tendency, latent correlations are lower in magnitude for content dimensions than for cognitive 

dimensions. Brunner (2006) as well as Winkelmann and Robitzsch (2009) compared model 

fits of MIRT models and found a better fit for models differentiating between content 

domains. 

The higher empirical separability of content in comparison to cognitive domains 

might be partly due to the specific item construction and IRT modeling approach applied in 

the above mentioned studies, most of which used items that assess multiple cognitive 

domains simultaneously. Content domains, in contrast, were less frequently mixed within 

individual items. At the same time, MIRT models with between-item dimensionality (i.e., 

MIRT models in which each item loads on one dimension only; for an exception see 

Winkelmann and Robitzsch, 2009) were applied. When single test items assess one 

dimension (as was the trend for the case of content domains), the application of MIRT 

models with between-item structure is appropriate. When single test items, however, measure 

multiple dimensions simultaneously (as was the case for cognitive domains), the application 

of between-item models (forcing multidimensional items to load on one dimension only) 

could lead to an overestimation of latent correlations and consequently an underestimation of 

                                                           
3 Although the described findings on problem solving and computation are well-documented, it should 

be noted that other findings have also been reported (e.g., Kaiser & Steisel, 2000).  
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dimensionality (Robitzsch, 2009; Zhang, 2004). An overestimation of correlations between 

cognitive dimensions thus might have occurred in some of the studies reported above. Such 

an overestimation might be reduced by avoiding a mixture of cognitive domains within 

individual items, as far as possible, by using a systematic item construction and coding 

technique. 

 Content-specificity of cognition in mathematics. 

 The content-specificity of cognitive assessment outcomes in mathematics has seldom 

been addressed and investigated yet.4 Niss (2003, p. 9) argues that his cognitive domains are 

specific to mathematics, but “overarching across mathematical topic areas”. Stone, Ye, Zu, 

and Lane (2010) examined the empirical separability of content-specific types of 

mathematical reasoning (numeric reasoning, algebraic reasoning, geometric reasoning, and 

quantitative reasoning). Results of their four-dimensional IRT analysis revealed high latent 

correlations (ranging from .90 to .97), indicating a high similarity of reasoning across content 

domains. We are unaware of any other study dealing with the content-specificity of cognitive 

domains in mathematics; none of the studies reported in the previous sections attended to this 

issue.  

Taken together, first, empirical evidence indicates a higher separability for 

mathematical content than for cognitive domains. Findings are not, however, entirely clear. 

Only five of the described studies examined content-specific and cognition-specific 

differentiations (Blum et al., 2004; Brunner, 2006; Klieme, 2000; Klieme et al., 2001; 

Winkelmann & Robitzsch, 2009). Only two of these studies compared the content- and 

cognition-related model with regard to model fits (Brunner, 2006; Winkelmann & Robitzsch, 
                                                           

4 In contrast, the content-specificity of very basic cognitive processes (like judgment and decision 

making) is currently strongly debated in various fields of psychology (for an overview see Roberts, 2007). For 

educational assessment purposes, however, the content-specificity of less basic, more complex cognitive 

assessment categories (such as Niss’s cognitive domains, 2003) appears to be of greater practical relevance. 
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2009). Methodological considerations suggest an alternative item construction and coding 

approach. Second, to our knowledge, few empirical findings exist on the content-specificity 

of cognitive domains in mathematics; further research is thus needed. 

Present Study  

The present study aims at pursuing the question whether mathematical competence 

can be differentially assessed with respect to (a) content-, (b) cognition-, or (c) content-

specific cognition-related domains. To this end, we analyzed the empirical separability of 

content domains, cognitive domains, and content-specific cognitive domains by applying 

MIRT models. In contrast to previous studies, we tried to avoid strong mixtures of cognitive 

domains within individual items as well as strong mixtures of content domains. That is, each 

item should primarily assess one content domain and one cognitive domain only. We focused 

on two mathematical content domains (specified at the content unit level, see Footnote 1: 

linear equations, LEQ, and theorem of Pythagoras, PYT) and two mathematical cognitive 

domains (technical competence, TC, and modeling competence, MC). Linear equations 

belong to the algebraic content area, theorem of Pythagoras to the geometric content area. We 

chose linear equations and theorem of Pythagoras as content domains because they constitute 

theoretically distinct, but central contents within secondary school curricula (NCTM, 2000) 

and large scale assessments (like TIMSS, e.g., Mullis et al., 2004). Technical competence 

refers to the usage of knowledge about mathematical facts and skills; modeling competence 

refers to the transformation of a real world problem into a mathematical problem and vice 

versa (Leiss & Blum, 2006). We focused on modeling and technical competence as from a 

theoretical point of view they are relatively distinguishable components within the influential 

and widely accepted model proposed by Niss (2003, referred to as “modeling 

mathematically” and “handling mathematical symbols and formalisms”), also incorporated in 

the PISA assessment framework of mathematical literacy (referred to as “modeling” or 
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“mathematizing” and “using symbolic, formal and technical language and operations”; 

OECD, 2003, 2013). Our hypotheses were as follows:  

Hypothesis 1: Content domains (theorem of Pythagoras and linear equations) are 

empirically separable (see section “Content domains in mathematics”).  

Hypothesis 2: Cognitive domains (modeling competence and technical competence) 

are empirically separable.  

Although results from previous studies are inconclusive (see section “Cognitive 

domains in mathematics”), following our argumentation in the section “Comparison of 

content and cognitive domains in mathematics”, we assume that due to the item construction 

and coding technique applied in the present study, an empirical separability of cognitive 

domains is viable.  

Hypothesis 3: Content domains are at least as empirically separable as cognitive 

domains (see the findings from previous studies reported in the section “Comparison of 

content and cognitive domains in mathematics”).  

Following our methodological argumentation in the same section, we do not preclude 

that due to our item construction and coding technique, the empirical separability of cognitive 

and content domains might be similar. 

Hypothesis 4: Cognitive domains (modeling competence and technical competence) 

are content-specific.  

Although almost no previous research on this issue exists (see section “Content-

specificity of cognition in mathematics”), we believe that linear equations and theorem of 

Pythagoras each place different requirements on students’ technical competence and 

modeling competence. Whereas in linear equations technical competence primarily refers to 

knowledge on equations with unknowns and their representation in coordinate systems, in 

theorem of Pythagoras, technical competence includes knowledge on quadratics and 
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rectangular triangles. Accordingly, the PISA 2012 mathematics framework stated that 

regarding technical competence (referred to as “using symbolic, formal and technical 

language and operations”), “the symbols, rules and systems used […] vary according to what 

particular mathematical content knowledge is needed” (OECD, 2013, p. 31). Modeling 

competence (despite including components such as making assumptions that appear to be 

relatively content independent) builds on content-specific mathematical concepts and thus 

should also differ between content domains.  

The empirical criteria for testing Hypotheses 1-4 are presented in the section “Model 

estimation”. 

Methods 

Item Development  

To avoid strong dimensional mixtures within individual items, we constructed items 

primarily assessing modeling or technical competence, either belonging to the content 

domain of linear equations or theorem of Pythagoras. For a more detailed description of item 

development, we take a look at the so-called modeling or mathematization cycle (OECD, 

2003, see Figure 1; for a more detailed version of the modeling cycle see Blum & Leiss, 

2005; for recent revisions see OECD, 2013).  

[Please insert Figure 1 about here] 

The modeling cycle typically has to be completed when real-world problems are 

solved mathematically. Three steps are involved in this process: In the first step, the learner 

has to translate a real-world problem into a mathematical problem. This step involves 

organizing a real-world problem according to mathematical concepts, identifying the relevant 

mathematics, making assumptions, generalizing, formalizing, and then transforming the 

problem into a mathematical problem representing the situation. Subsequently (second step), 

the mathematical problem has to be solved within the mathematical world. Finally, in the 
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third step, the solution has to be translated and interpreted into the original real-world 

context. That is, the learner has to make sense of the mathematical solution in terms of the 

real situation (step 3a) and should identify the limitations of the solution (step 3b). Technical 

competence is needed to perform step two of the cycle, modeling competence is required for 

steps one and three.  

Items primarily requiring technical competence (TC, step two in the modeling cycle) 

were developed by generating typical arithmetical and geometrical problems (see Figure 2 for 

an example). Items primarily assessing modeling competence (MC) focused on step one or 

step three. Frequently, they described real-world problems and required a mathematization 

(step one), for example, in terms of identifying the relevant information required to solve the 

real-world problem mathematically (see Figure 3 for an example). For most of these items, no 

technical operations in terms of computations or drawings (step two) were needed. If 

computation or drawings were required, items were specifically coded with respect to 

modeling competence (step one and three) – technical mistakes such as the incorrect 

transformation of an equation were tolerated. To a certain degree, however, modeling items 

still assessed some technical aspects. The translation of a real-world problem into a 

mathematical problem implicitly presupposes knowledge about mathematical equations, 

functions, terms, or geometrical constructions – these aspects of technical competence could 

not be completely eliminated by item construction or coding. 

[Please insert Figures 2 and 3 about here] 

Taken together, our item pool consisted of four item types: (a) PYT×TC, (b) 

PYT×MC, (c) LEQ×TC, (d) LEQ×MC. The number of items per item type is given in Table 

1. Open and short answers as well as multiple-choice response formats were used. Following 

the literacy concept in PISA, MC items were embedded in different real-life situations 

(primarily personal and occupational, but also social and scientific situations, e.g., OECD, 



RUNNING HEAD: COGNITIVE AND CONTENT DOMAINS IN MATHEMATICS       14 

 

2013). Items were largely developed in the context of the Co2CA-project and partly derived 

from the DISUM-project (Blum & Leiss, 2007) and the Pythagoras-study (Klieme, Pauli, & 

Reusser, 2009). The final item pool contained 122 items. As not all items could be worked on 

by all students, a multimatrix design (Youden square design) with 31 booklets was applied 

(Frey, Hartig, & Rupp, 2009). Each booklet covered both content domains as well as both 

cognitive domains and was composed of six (out of 31) item clusters. Each cluster referred to 

one specific content domain and consisted of modeling and technical competence items 

(approximately fifty-fifty in most cases). Each cluster appears in six different booklets and 

once in each of the six possible positions within a booklet. Each pair of clusters appears once. 

Each item was worked on by on average 276 students.  

[Please insert Table 1 about here] 

Data Collection 

A total of N = 1,570 ninth graders (51.4% female) with a mean age of 15 years, 11 

months (SD = 8.80 months) were tested. Students were from 66 intermediate-track classes or 

courses in 33 intermediate secondary schools (Realschule) or comprehensive schools 

(Gesamtschule) in the German federal state of Hesse. Between one and four classes were 

tested per school. All participating classes had finished the teaching units on the Pythagorean 

theorem and on linear equations. Data collection took place from May to June 2008 and was 

conducted during the regular teaching time, at the respective school. Each class was tested 

under standardized conditions by one (of six) trained graduate students. Each testing session 

lasted about 75 min.  

Data Coding  

Students’ responses were coded by trained graduate students using a standardized 

coding guideline. For open answer items, interrater reliability was evaluated by independent 

double coding of 7.5% of randomly chosen students’ answers. Interrater reliability estimates 
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indicated a strong degree of agreement among coders (after recoding, Cohen’s kappa was κ = 

.93 across all items and raters). 

Item responses were coded dichotomously (correct/incorrect). For missing responses, 

two different codes were assigned: A missing response was coded as incorrect if students 

worked on at least one of the subsequent items. If none of the subsequent items were reached, 

the missing answer was coded as missing. Thus, missing responses (due to a low processing 

speed) did not influence the estimation of person parameters and thereby the estimation of 

correlations between latent dimensions. This kind of coding is common practice in large scale 

assessments like PISA (e.g., OECD, 2009b). In addition, responses missing by design (i.e., 

due to booklet design) were also treated as missing. Students who mainly gave implausible 

responses – for example, ignoring tasks and commenting on items with irrelevant statements 

– were dropped from the analysis. In 90 cases (5.73%) there were doubts concerning the 

plausibility of responses, resulting in a sample size of N = 1,480 (51.7% female, with a mean 

age of 15 years, 11 months, SD = 8.90 months).  

Model Estimation  

 Four two parameter logistic (2PL) MIRT models with between-item structure 

(Reckase, 2009) were applied to the data (see Figure 4, Models 1-4). Model 1 was a 

unidimensional model with mathematical competence as latent dimension. Model 2 and 

Model 3 were two-dimensional models, with Model 2 differentiating between content 

domains (theorem of Pythagoras, linear equations) and Model 3 distinguishing between 

cognitive domains (technical competence, modeling competence). Model 4 comprised four 

content-specific cognitive dimensions: technical competence specific for theorem of 

Pythagoras, modeling competence specific for theorem of Pythagoras, technical competence 

specific for linear equations, and modeling competence specific for linear equations. 
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In a first step, item fit was examined to eliminate poorly functioning items from the 

item pool. For each content-specific cognitive dimension, a 2PL IRT analysis was conducted 

in ConQuest 3.0, using marginal maximum likelihood estimation and a Gauss-Hermite 

Quadrature numerical integration with 15 integration points per dimension. The item 

exclusion criterion was a weighted mean square (MNSQ) parameter smaller than 0.80 or 

greater than 1.20. In addition, item plots were checked for sufficient fit between empirical 

and expected item characteristic curves; particularly for multiple-choice items guessing 

effects were examined. Based on these criteria, no item had to be eliminated.  

To address our hypotheses, Models 1-4 were applied to the data. Models were 

compared with regard to two relative model fit indices, Akaike’s information criterion (AIC) 

and sample-size-adjusted Bayesian information criterion (BIC). Lower (smaller) fit statistics 

indicate preferred models for both AIC and BIC. We expected Model 1 to yield a worse fit 

than Model 2 (Hypothesis 1, empirical separability of content domains) and a worse fit than 

Model 3 (Hypothesis 2 empirical separability of cognitive domains). The fit of Model 2 was 

assumed to be at least as good as the fit of Model 3 (Hypothesis 3, empirical separability of 

content vs. cognitive domains). Model 4 was expected to fit better than Model 2 and Model 3 

(Hypothesis 4, content-specificity of cognitive domains). In addition, the latent correlation in 

Model 2 was examined to investigate Hypothesis 1, the latent correlation in Model 3 was 

studied to test Hypothesis 2, latent correlations in Model 2 and Model 3 to examine 

Hypothesis 3, and latent correlations in Model 4 to test Hypothesis 4. Lower latent 

correlations indicate a better empirical separability. 

To provide further insights into the discriminability of content, cognitive, and content-

specific cognitive domains and support findings on Hypotheses 1-4, we additionally 

exploratively analyzed differential gender effects for different content, cognitive, and 

content-specific cognitive domains. To that end, Models 2-4 were supplemented by gender (0 
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= female, 1= male) as a predictor for latent dimensions (see Figure 4, Models 5a-c). The 

equality of standardized5 gender effects on (a) linear equations and theorem of Pythagoras 

(Model 5a), (b) modeling and technical competence (Model 5b), and (c) content-specific 

modeling competencies and technical competencies (Model 5c) was analyzed with a Wald 

test. 

Analyses were conducted with MPlus 7.0 (Muthén & Muthén, 1998-2012), using the 

maximum likelihood estimation with robust standard errors (MLR) and a trapezoid numerical 

integration algorithm with 15 integration points per dimension. Due to nested data structure 

(students were nested in classes), pseudo maximum likelihood (PML) estimation was used to 

obtain corrected standard errors (Asparouhov & Muthén, 2005).  

[Please insert Figure 4 about here] 

Results 

Item and Scale Characteristics: Item Difficulties, Item Discriminations, and Reliabilities 

Descriptive statistics on the standardized item difficulties, item discriminations, and 

reliabilities (for each dimension of Model 1-4, Figure 4) are set out in Table 2. Two types of 

reliability coefficients are reported: EAP/PV reliability and standardized Cronbach’s alpha. 

EAP/PV reliability is an IRT-specific reliability estimate, taking into account the multimatrix 

design of the study (and thus the fact that not every student worked on each item; see the 

average number of answered items per scale also given in Table 2). EAP/PV reliability is 

based on the variance of factor scores and the average of factor scores’ squared standard 

errors (Rost, 2004). Standardized Cronbach’s alpha is a reliability estimate from classical test 

theory. We added this coefficient as it applies to a non multimatrix scenario in which each 

student works on all items of the scale (see the total number of items per scale given in Table 

                                                           
5 Beta-coefficients were standardized using the variances of the respective latent outcome variables (y-

standardization). 
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2). Standardized Cronbach’s alpha was not estimated in MPlus, but calculated on the basis of 

the number of items and the average correlation between items per scale (e.g., Cortina, 1993). 

Variances were fixed to one for each dimension of Model 1-4. 

[Please insert Table 2 about here] 

Model Comparison and Latent Correlations (Hypotheses 1-4) 

Information criteria for Models 1-4 (Figure 4) are set out in Table 3. As expected, 

Model 2 had a better fit than Model 1 (Table 3). As, furthermore, the latent correlation 

between linear equations and theorem of Pythagoras was only r = .62, content domains can 

be regarded as empirically separable (Hypothesis 1). Table 3 shows that, as hypothesized, 

Model 3 provided a better fit than Model 1. The latent correlation between modeling and 

technical competence (Model 3) was r = .82. The assumption of a two-dimensional, 

cognition-related data structure is thus not imperative, but appears justifiable – particularly 

with regard to the model fit (Hypothesis 2). A comparison of information criteria (Table 3) 

and latent correlations between Model 2 and Model 3 indicates a stronger separability of 

content domains than cognitive domains (Hypothesis 3). In line with our expectations, Model 

4 yielded a better fit than both two-dimensional models (Model 2 and Model 3; Table 3), 

indicating a content-specific measurement of modeling competence and technical 

competence (Hypothesis 4).  

[Please insert Table 3 about here] 

This finding is supported by the latent correlation between the two dimensions of 

modeling competence, r = .63, and the latent correlation between the two dimensions of 

technical competence, r = .54 (latent correlations between the four dimensions of Model 4 are 

given in Table 4). Especially the correlation between both technical competence dimensions 

is strikingly low – even lower than the latent correlation between technical competence in 

theorem of Pythagoras and modeling competence in linear equations, r = .55 (but still greater 
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than the latent correlation between technical competence in linear equations and modeling 

competence in theorem of Pythagoras, r = .48). In line with the content-specificity of 

cognitive domains, the latent correlations between modeling and technical competence vary 

as a function of content domain – with r = .85 for theorem of Pythagoras and r = .62 for 

linear equations. 

To gain a better understanding of the magnitude of latent correlations in Model 4, an 

additional four-dimensional model was run with items allocated to the four dimensions in an 

arbitrary way (i.e., items 1, 5… were loaded on PYT×TC, items 2, 6… on PYT×MC, items 3, 

7… on LEQ×TC, items 4, 8… on LEQ×MC; following an approach described in Wu & 

Adams, 2006). Latent correlations in the random model can serve as a benchmark helping to 

assess the magnitude of latent correlations in Model 4. The random model yielded a worse fit, 

AIC = 33265,700, sample-size adjusted BIC = 33804,966, than Model 4 (and a worse fit than 

Model 1-3; see Table 3). The latent correlations between the arbitrary dimensions are higher 

than the latent correlations in Model 4 (see Table 4; and also than the latent correlations in all 

other models). This provides further evidence for the empirical separability of content-

specific cognitive domains. Nevertheless, shared variance undoubtedly exists between 

dimensions (especially between technical and modeling competence in the domain of 

theorem of Pythagoras).  

[Please insert Table 4 about here] 

Differential Gender Effects  

Differential gender effects were exploratively tested with Models 5a-c (Figure 4). 

Standardized gender effects for each dimension of Model 5a-c and Wald coefficients for 

Models 5a-c are set out in Table 5.  

[Please insert Table 5 about here] 



RUNNING HEAD: COGNITIVE AND CONTENT DOMAINS IN MATHEMATICS       20 

 

Results for Model 5a indicate a significant advantage of boys in linear equations and 

theorem of Pythagoras. The Wald test does not reveal a significant difference between both 

gender effects suggesting that boys outperformed girls to a similar extent in both content 

domains. In contrast, findings for Model 5b show that boys did significantly better than girls 

in modeling competence but not in technical competence. The Wald test reveals a significant 

difference regarding the two gender effects. Results for Model 5c (which differentiates 

between content and cognitive domains) indicate that in comparison to girls, boys did 

significantly better in technical competence and modeling competence in the domain of 

theorem of Pythagoras and in modeling competence in the domain of linear equations but not 

in technical competence in the domain of linear equations. Correspondingly, the Wald test 

(constraining the four path coefficients to be equal) reveals differential gender effects for the 

four dimensions (see Table 5). Results of additional Wald tests (constraining pairs of path 

coefficients to be equal) are set out in Table 6. Compared to girls, boys had the greatest 

performance advantage in modeling competence items. Table 6 shows that this advantage in 

modeling competence is of equal size for linear equations and theorem of Pythagoras. Boys’ 

performance advantage in technical competence in theorem of Pythagoras is comparatively 

small. Other than the gender effects for the content-specific modeling competencies, it does 

not significantly differ from the nonexistent gender effect for technical competence in linear 

equations. Whereas in linear equations gender effects for technical and modeling competence 

vary significantly, no differential gender effects were shown for technical and modeling 

competence in theorem of Pythagoras (see Table 6). 

[Please insert Table 6 about here] 

Discussion 

Explanation of Findings 

Our results show that content domains (theorem of Pythagoras and linear equations) 
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can be empirically separated as distinguishable dimensions (Hypothesis 1). Similar results 

were found in large scale assessments (like PISA: Blum et al., 2004; Brunner, 2006; Liu et 

al., 2008; TIMSS: Klieme, 2000) and national standard assessments (e.g., Winkelmann & 

Robitzsch, 2009). The latent correlation between linear equations (belonging to the content 

domain of algebra) and theorem of Pythagoras (associated with the content domain of 

geometry) in the present study (r=.62) was even lower than latent correlations between 

algebra- and geometry-related dimensions observed in many previous studies (see, for 

example, Blum et al., 2004 and Brunner, 2006 who found a correlation of r = .87 between 

algebra and geometry). The comparatively low correlation in our study could be due to the 

fact that unlike others, we did not investigate the separability of broad content domains like 

algebra and geometry (content areas), but focused on two specific, theoretically well 

distinguishable units within these areas (see Footnote 1). 

In line with previous studies (Brunner, 2006; Klieme, 2000; Wu & Adams, 2006), we 

found a high correlation between cognitive domains (modeling and technical competence), in 

combination with a relatively good model fit for the cognition-specific MIRT model 

(compared to the unidimensional IRT model). Particularly, the comparatively good model fit 

could be interpreted as an indication of the empirical separability of cognitive domains 

(Hypothesis 2). Regarding the latent correlation, however, both combining subscales into one 

total score and using cognition-specific subscores appears justifiable. To put the magnitudes 

of latent correlations into perspective, however, it should be noted that, first, we are dealing 

with latent correlations which are not attenuated by the measure’s unreliability and, thus, are 

higher than manifest correlations. Second, large scale assessments like PISA report relatively 

high latent correlations even between content domains like reading, science, and mathematics 

(subjects, see Footnote 1; correlation between reading and science: r = .89; correlation 

between science and mathematics: r = .85, correlation between reading and mathematics: r = 
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.82, OECD, 2002). Third, studies dealing with mathematical cognitive domains similar to 

ours found similar or even stronger relationships. The study of Blum and colleagues (2004), 

for example, revealed a correlation of r = .89 between technical tasks and both computational 

modeling tasks and conceptual modeling tasks (the latent correlation reported in our study is r 

= .82).  

Corresponding to the findings on Hypotheses 1 and 2, results show that content 

domains are better empirically separable than cognitive domains (Hypothesis 3). Our finding 

corresponds to results of previous studies that apply content- and cognition-specific MIRT 

models and reveal lower latent correlations (Blum et al., 2004; Brunner, 2006; Klieme, 2000; 

Klieme et al., 2001; Winkelmann & Robitzsch, 2009), and better model fit (Brunner, 2006; 

Winkelmann & Robitzsch, 2009) for content-specific models. Obviously, our systematic item 

construction and coding technique did not lead to similar separabilities of content and 

cognitive domains. This might be partly due to the fact that a certain mixture of modeling and 

technical competence within modeling items could not be entirely avoided (see section “Item 

development”). 

Our analyses reveal cognitive domains to be content-specific (Hypothesis 4). By 

contrast, Niss (2003, p.9) argues that his cognitive domains are “overarching across 

mathematical topic areas”, and Stone et al. (2010) found a high similarity of mathematical 

reasoning across content domains. As our results show that technical competence is more 

content-specific than modeling competence – and, thus, cognitive domains to vary with 

regard to content specificity – results of Stone and colleagues might differ from ours as they 

refer to another cognitive domain. In line with the content-specificity of cognitive domains, 

we additionally found that the separability of technical and modeling competence varies 

across content domains. Cognitive domains were better separable for linear equations than for 

theorem of Pythagoras. Two possible explanations are: First, technical competence in linear 
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equations primarily refers to the application of algebraic operations to solve given equations. 

In contrast, in theorem of Pythagoras, in a first step, the equation has to be deduced from a 

geometrical representation before it can be solved. As modeling competence in both content 

domains does not refer to equation-solving, but to the deduction of the correct mathematical 

approach (including the setup of the correct equation), the empirical separability of modeling 

and technical competence might be higher for linear equations than for theorem of 

Pythagoras. Second, in theorem of Pythagoras modeling competence necessarily presupposes 

technical knowledge on the theorem of Pythagoras, whereas for linear equations modeling 

items do not always have to be solved algebraically (like most technical items). Instead, some 

modeling items can be solved arithmetically by inserting concrete numeric values instead of 

variables into equations (see also Resnick, Cauzinille-Marmeche, & Mathieu, 1987). 

Our findings on Hypotheses 1-4 were widely supported by our explorative analyses 

on differential gender effects which mostly demonstrate that the separated dimensions have 

different psychological meaning. In line with our findings on Hypothesis 2, boys were 

favored by items on modeling competence but not by items on technical competence. This 

also corresponds to previous studies showing the superiority of boys in working on complex 

problem solving tasks (Hyde et al., 1990; Lindberg et al., 2010) and word problems (e.g., 

Ryan & Chiu, 2001) and a relative strength of women in computation (e.g., Hyde et al., 

1990). Our findings on Hypothesis 1 were not supported by differential gender effects, 

however. Boys outperformed girls in both content domains to a similar extent. Previous 

research in this area revealed inconsistent results: Whereas some showed a male superiority 

in geometry (Hyde et al., 1990; Liu et al., 2008) and comparable performance of boys and 

girls in algebra (e.g., Hyde et al., 1990), others found girls to do better in geometry and 

algebra (e.g., Mullis et al., 2008). Besides different definitions of content domains and 

different sample attributes (e.g., Else-Quest, Hyde, & Linn, 2010), diverging results might be 
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due to different cognitive requirements of items. Thus, a more fine-grained perspective, 

taking into account content and cognitive domains, might serve to understand differential 

strengths and weaknesses of boys and girls. Accordingly, in line with our findings on 

Hypothesis 4, we found differential gender effects when both content and cognitive domains 

were taken into account. Results show that in the content domain of linear equations, boys 

did better than girls on modeling items, but not on technical items (with a significant 

difference between both gender effects). In the content domain of theorem of Pythagoras 

however, male students outperformed female students in modeling competence and in 

technical competence (with no significant difference between the two gender effects).6 These 

results correspond to our finding that cognitive domains are better separable for linear 

equations than for theorem of Pythagoras.  

Limitations 

One limitation of this project pertains to the generalizability of our results. Our 

findings refer to the separability of linear equations and theorem of Pythagoras and to the 

separability of technical and modeling competence; they should not be transferred to other 

domains. Strictly speaking, one could even argue that our results solely refer to linear 

equations and theorem of Pythagoras respectively technical and modeling competence as 

measured with our items. When interpreting our results one furthermore has to keep in mind 

that items do not purely measure modeling or technical competence. Additional competencies 

like text comprehension are partly required. Modeling competence items assess some 

                                                           
6 These findings are in line with previous studies that show an advantage of boys in geometry and a 

relative strength of girls in algebra (e.g., Hyde et al., 1990). The finding that within the domain of linear 

equations girls and boys did equally well in technical but not in modeling competence (here, boys outperformed 

girls) corresponds to the well-documented advantage of boys in problem solving (e.g., Hyde et al., 1990) and 

word problems (e.g., Ryan & Chiu, 2001) and relative strengths of girls in mathematical operations (e.g., Hyde 

et al., 1990; Ryan & Chiu, 2001). 
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technical aspects. Moreover, naturally items can be solved in different ways, and depending 

on the solution process, different competencies might be required and assessed. As stated 

above, some of our modeling competence items on linear equations, for instance, do not 

necessarily have to be solved algebraically. Finally, some subscales reveal low reliabilities. 

The low EAP/PV-coefficients are due to the multimatrix design in which each student 

responded to a small number of items per subscale only. For the hypothetical case in which 

students work on all items per subscale, satisfying reliabilities were shown. It should be 

emphasized, however, that our primary concern was not the development of a reliable test 

instrument, but the analysis of relationships between mathematical domains. As mathematical 

domains were modeled as latent variables in MIRT models, we captured the unreliability of 

measurement in the model and estimated relations between latent variables controlled for 

measurement error. 

Implications for Practice  

Despite these limitations, we believe that the present study contributes to a deeper 

understanding of the internal differentiation of mathematical competence. Mathematical 

competence was shown to have distinct, but positively correlated content-specific, cognition-

specific, and content×cognition-specific subdimensions. If a fine-grained diagnostics is 

intended (as is generally the case for formative assessment), our findings suggest the use of a 

content×cognition-related differentiation. Particularly, for the content domain of linear 

equations the distinction between content-specific technical and modeling competence 

appears appropriate. The formative use of corresponding subtests at key points of the 

curriculum might contribute to a more differentiated diagnostics in the classroom and, thus, 

help teachers to identify students’ strengths and weaknesses, to provide differentiated 

feedback, and to adapt instruction to students’ needs. Clearly, the administration and scoring 

of such tests and the generation of differentiated competence feedback is time-consuming for 
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teachers. Nevertheless, the effort might be worthwhile. Previous research showed that 

feedback (in terms of competence models) differentiating between content-specific cognitive 

domains (technical and modeling competence in linear equations) had a greater impact on 

ninth graders’ mathematics achievement than non-differentiated feedback (Harks, 2013).  

One possible way of reducing testing effort for teachers and students might be the 

formative use of single diagnostic tasks instead of tests – with the limitation of limited 

reliability (for the role of test quality in formative assessment, see e.g., Harlen, 2008, Hattie, 

2003, and Stobart, 2006; for a field experiment investigating the formative use of single 

diagnostic tasks – content-specific technical and modeling items – at key points of the 

curriculum, see Bürgermeister et al., 2011). Computer-based assessment presents a promising 

alternative to paper-pencil-based tasks or tests. It enables an adaptive, differentiated, 

theoretically and psychometrically well-founded assessment of competencies, an automatic 

scoring of answers and a timely provision of individualized, differentiated feedback (e.g., 

Russel, 2010).  

 Not all kinds of assessment, however, require the same level of differentiation. Large 

scale assessments, primarily operating on school and country level, certainly require less 

fine-grained categorizations than formative contexts. So far, PISA and TIMSS provide total, 

content-, or cognition-related scores (e.g., OECD, 2004, 2013). Regarding these categories, 

our findings indicate a content-related categorization to be superior to a cognitive one (in 

terms of empirical separability). 

Suggestions for Future Research 

In future studies, the mixture of competencies (e.g., modeling and technical 

competence) within individual items might be taken into account by applying MIRT models 

with within-item dimensionality. In this type of MIRT models single items load on multiple 

ability dimensions simultaneously (Adams, Wilson, & Wang, 1997; Hartig & Höhler, 2008). 
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One challenge regarding the application of within-item models is that frequently 

noncompensatory relationships between dimensions have to be taken into account (e.g., 

Hartig & Höhler, 2009; Stout, 2007) – this would also be the case for items like ours. MIRT 

models with a noncompensatory within-item structure, however, have been relatively little 

investigated yet (Babcock, 2011; Reckase, 2009) and impose strong data requirements 

(Babcock, 2011).7 Thus, further methodological work is necessary before noncompensatory 

MIRT models can be routinely used to investigate competence structures.  

Similarly, diagnostic classification models (DCMs) appear to be a promising 

methodological approach for differentiated diagnostics of mathematical competence. In 

contrast to multidimensional IRT models, DCMs are probabilistic confirmatory 

multidimensional models with categorical latent skills (for an overview see e.g., DiBello, 

Roussos, & Stout, 2007). Although the methodological examination of DCMs still is in its 

infancy in several aspects, it would be appealing to investigate whether it is possible to create 

a reliable multivariate attribute profile for complex items like ours (for the application of 

DCMs for less complex mathematics items see Kunina-Habenicht, 2010; Kunina-Habenicht, 

Rupp, & Wilhelm, 2009).  

To gain a more comprehensive understanding of mathematical competence structure, 

in a next step, a higher order factor of general mathematical competence as well as the 

empirical separability of further mathematical content, cognitive, or content-specific 

cognitive domains could be investigated and compared between different age groups. Test 

development for formative and summative purposes might be based on the findings from such 

analyses. Future studies should finally continue dealing with the practical relevance of 

                                                           
7 This could be the reason why Winkelmann and Robitzsch (2009) used MIRT models with a 

compensatory (instead of a noncompensatory) within-item structure (see the corresponding discussion in 

Winkelmann, 2009).  
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differentiated competence diagnostics for students and teachers. It would be desirable to 

pursue research on the effects of differentiated competence feedback on student learning (first 

results are described by Harks et al., 2014 & Rakoczy et al., 2013) and to study the utilization 

of differentiated diagnostics for instructional adaptions.  
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Table 1 

Number of Items per Item Type 

 Content domain   

Cognitive domain Pythagoras theorem Linear equations  Total 
Modeling competence 28 23  51 

Technical competence 49 22  71 

Total 77 45  122 
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Table 2 

Standardized Item Difficulties, Item Discriminations, Reliabilities (EAP/PV, Cronbach’s α), and Number of Items (for each 

Dimension of Models 1-4) 

  Item difficulty  Item discrimination      

Dimension 
 

Min Max M SD  Min Max M SD  EAP/PVa 
Cronbach’s 

αb 
Average number 

of answered 
items 

Total 
number of 

items 
Model 1                

   MATH  -1.96 2.98 0.49 0.77  -.15 1.00 .44 .22  .76 .93 22.78 122 

Model 2                 

   PYT  -1.96 2.06 0.25 0.70    .02   .97 .47 .22  .72 .91 14.56 77 

   LEQ  -0.21 2.90 0.91 0.72  -.06 1.00 .49 .23  .55 .85   8.23 45 

Model 3                 

   TC  -1.94 3.00 0.39 0.87    .00 1.00 .47 .22  .73 .89 13.38 71 

   MC  -0.28 2.31 0.64 0.59  -.15   .87 .45 .23  .69 .85   9.40 51 

Model 4                

   PYT×TC  -1.94 1.59 0.07 0.72    .01   .98 .48 .24  .70 .86   9.36 49 

   PYT×MC  -0.28 2.05 0.58 0.53    .18   .87 .51 .22  .66 .83   5.20 28 

   LEQ×TC  -0.09 2.90 1.09 0.74    .21 1.00 .61 .19  .46 .84   4.03 22 

   LEQ×MC  -0.22 2.33 0.73 0.67  -.10   .84 .46 .25  .50 .74   4.20 23 

Note. PYT = theorem of Pythagoras; LEQ = linear equations; TC = technical competence; MC = modeling competence.  

a EAP/PV reliability based on items actually answered. b Standardized Cronbach’s α based on all items of the scale.
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Table 3 

Number of Free Parameters and Fit Indices for Model 1-4 

Model Free 
parameters AIC BIC 

Model 1: Unidimensional 244 33253,550 33771,584 

Model 2: Two-dimensional (PYT, LEQ) 245 33118,211 33638,369 

Model 3: Two-dimensional (TC, MC) 245 33185,424 33705,582 

Model 4: Four-dimensional  250 33035,399 33566,173 

Note. PYT = theorem of Pythagoras; LEQ = linear equations; TC = technical 

competence; MC = modeling competence; AIC = Akaike´s information criterion; 

BIC = sample-size adjusted Bayesian information criterion. 
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Table 4 

Latent Correlations (Standard Errors) in Model 4 and in the Random Model 

Dimension PYT×TC PYT×MC LEQ×TC LEQ×MC 
PYT×TC – .93 (.03)   .90 (.04)   .92 (.04) 

PYT×MC .85 (.03) – 1.00 (.01) 1.00 (.00) 

LEQ×TC .54 (.06) .48 (.07) – 1.00 (.01) 

LEQ×MC .55 (.06) .63 (.07)   .62 (.08) – 

Note. Latent correlations for Model 4 are printed below the main diagonal, latent correlations for the 

random model above the main diagonal. TC = technical competence; MC = modeling competence; 

PYT = theorem of Pythagoras; LEQ = linear equations. 
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Table 5 

Standardized Gender Effects (β) for each Dimension in Model 5a-c, 

Wald-tests for Model 5a-c  

 β  Wald 

Dimension Estimate p  Estimate df p 
Model 5a    0.01 1 .910 

   PYT       .33** < .001     

   LEQ     .35*    .039     

Model 5b       3.96* 1 .047 
   TC   .21    .283     

   MC       .56** < .001     
Model 5c      13.60** 3 .004 

   PYT×TC     .21*    .010     

   PYT×MC       .48** < .001     

   LEQ×TC   .05    .679     

   LEQ×MC       .53** < .001     

Note. Gender is dummy-coded (0 = female, 1 = male). Beta-coefficients are 

standardized using the variances of the respective latent outcome variables. 

PYT = theorem of Pythagoras; LEQ = linear equations; TC = technical 

competence; MC = modeling competence. 

* p < .05. ** p < .01. 
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Table 6 

Wald Tests for Pairwise Comparisons of Standardized Gender 

Effects in Model 5c 

 PYT×TC  PYT×MC  LEQ×TC 

Dimension Wald p  Wald p  Wald p 
PYT×TC         

PYT×MC    3.48 .062       

LEQ×TC    1.71 .191    6.76** .009    

LEQ×MC    6.18* .013    0.09 .763    9.70** .002 

Note. Each pairwise comparison has one degree of freedom. TC = 

technical competence; MC = modeling competence; PYT = theorem of 

Pythagoras; LEQ = linear equations. 

* p < .05. ** p < .01. 
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Figure 1. Modeling cycle (based on OECD, 2003). 
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Figure 2. Example of a Pythagoras item primarily requiring technical competence 

(TC item). 

  

Calculate the missing length x in the rectangular 
triangle depicted on the right (the illustration is not 
true to scale). 
 
 
x=                          

6 cm 

x 
5 cm 
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Please read the following task first. Do not write down the solution yet! 
 

Short cut 
Ms Blum is driving on the state road B47 on 

her way home and she is far too late as usual. 

She is about to reach the junction where 

Badstraße and Querallee branch off to the left. 

Normally, she would need to continue driving 

on the B47 and turn left at the traffic light 

towards the state road B11 then continue 

driving straight ahead until she gets home. 

Even though she is allowed to drive faster on 

the state road, she is considering to take a 

short cut via the adjacent residential area (see 

the picture – not drawn to scale). 

Is it worthwhile for Ms Blum to take a short cut through the residential area? Please explain. 

 

Which of the following information do you at least require to solve the task depicted above? 

Please tick all the relevant information! You do not need to write down the solution to the “short 

cut” task. 

 

 The distance on the B47 from the junction “Querallee” to the traffic light is 1.5 kilometers. 

 The length of Badstraße is 1 kilometer. 

 The distance on the B11 from the traffic light to Ms Blum’s home is 2 kilometers. 

 The state road speed limit is 70 kilometers per hour and the maximum speed on Querallee 

is 30 kilometers per hour. 

 The state road B47 is as broad as the state road B11. 

 Ms Blum’s maximum car speed is 187 kilometers per hour. 

 

Figure 3. Example of a Pythagoras item primarily requiring modeling competence  

(MC item). 
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Figure 4. Model 1: unidimensional model, Model 2: two-dimensional model (dimensions: 

theorem of Pythagoras, linear equations), Model 3: two-dimensional model (dimensions: 

modeling competence, technical competence), Model 4: four-dimensional model 

(dimensions: modeling competence specific for theorem of Pythagoras, technical competence 

specific for theorem of Pythagoras, modeling competence specific for linear equations, 

technical competence specific for linear equations), Model 5a: Model 2 plus gender as a 

predictor, Model 5b: Model 3 plus gender as a predictor, Model 5c: Model 4 plus gender as a 

predictor. Gender is dummy-coded (0 = female, 1= male). PYT = theorem of Pythagoras; 

LEQ = linear equations; MC = modeling competence; TC = technical competence. 
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