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Abstract 

Using both behavioral and eye-tracking methodology, we tested whether and how asking 

students to generate predictions is an efficient technique to improve learning. In particular, we 

designed two tasks to test whether the surprise induced by outcomes that violate expectations 

enhances learning. Data from the first task revealed that asking participants to generate 

predictions, as compared to making post hoc evaluations, facilitated acquisition of geography 

knowledge. Pupillometry measurements revealed that expectancy-violating outcomes led to a 

surprise response only when a prediction was made beforehand, and that the strength of this 

response was positively related to the amount of learning. Data from the second task 

demonstrated that making predictions about the outcomes of soccer matches specifically 

improved memory for expectancy-violating events. These results suggest that a specific 

benefit of making predictions in learning contexts is that it creates the opportunity for the 

learner to be surprised. Implications for theory and educational practice are discussed. 

 

 

 

 

Keywords: knowledge activation, hypothesis generation, prediction error, memory, eye-

tracking 

 

 

 

 

  



 3 

1. Introduction 

Activating students’ prior knowledge has been identified as the cornerstone of high-quality 

instruction (Alexander, 1996; Ausubel, 1968; Bransford, Brown, & Cocking, 2000). 

Activating prior knowledge in the learner strongly improves their comprehension and 

memory of new material (Bransford & Johnson, 1972). Thus, a key question for educators is 

how to best activate relevant prior knowledge in their students. Various techniques to activate 

prior knowledge in students have been proposed (for an overview, see Krause & Stark, 2006). 

One technique is to ask students to make a prediction (also called ‘generate a hypothesis’) 

before receiving the new information. This technique has been successfully employed in 

studies that investigated ways to improve students’ learning of various materials, including 

learning from text (Fielding, Anderson, & Pearson, 1990), physics (Champagne, Klopfer, & 

Gunstone, 1982; Crouch, Fagen, Callan, & Mazur, 2004; Inagaki & Hatano, 1977), and 

biology (Schmidt, De Voider, De Grave, Moust, & Patel, 1989).  

It has been suggested that making a prediction requires accessing prior knowledge and 

connecting it to the new information being learned (Schmidt et al., 1989). Furthermore, it may 

stimulate curiosity for the correct answer (Inagaki & Hatano, 1977) and, if the answer was not 

correctly predicted, trigger conceptual change because the learners realize that there is a flaw 

in their concept (cf. Anderson, 1977, p. 427). Not surprisingly, then, asking students to make 

a prediction forms part of many prototypical instructional curricula (e.g., Champagne et al., 

1982; Hardy, Jonen, Möller, & Stern, 2006).  

However, despite its widespread use, very little is known about the mechanism(s) by 

which making a prediction may improve learning. In addition, a potential caveat to the 

prediction method is that students spend a lot of time and effort generating a prediction and 

might thus remember their wrong prediction instead of the correct result, as theorized by 

proponents of errorless learning (e.g., Baddeley & Wilson, 1994). Another caveat is that 

learners might not experience meaningful conflict despite having made a wrong prediction, 
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thereby leading to no conceptual change (Limón, 2001). Thus, knowledge of the specific 

mechanisms by which making a prediction affects learning seems crucial to resolve these 

opposing views. 

A relevant line of work that has recently gained momentum in cognitive psychology 

research concerns the effects of guessing on learning. Kornell, Hays, and Bjork (2009) 

showed that testing can be beneficial for memory even during novel learning, when 

participants can only guess the answer and nearly all guesses are incorrect. They argued that 

this so-called errorful generation instantiates a special case of the well-known generation 

effect (Slamecka & Graf, 1978) and may promote learning because it requires great retrieval 

effort. Study methods that make use of this effect (e.g., flashcards) have been shown to 

substantially enhance memory retention (the so-called testing effect, see Karpicke & Roediger, 

2008; Pyc & Rawson, 2009). Kornell et al.’s (2009) finding has sparked considerable interest 

and has been replicated and extended by various labs (Grimaldi & Karpicke, 2012; Huelser & 

Metcalfe, 2012; Potts & Shanks, 2014). A boundary condition that seems to be emerging from 

these studies is that, for guessing to be beneficial, timely corrective feedback is crucial, giving 

participants an opportunity to encode the correct answer (Vaughn & Rawson, 2012). Other 

than that, however, this line of work has focused mainly on the retrieval effort explanation as 

to why making a guess is beneficial for memory. 

Another related line of work concerns the role of surprise – i.e., the emotional 

response to outcomes that do not match the prediction (see Ekman, 1992) – in enhancing 

learning. This work is grounded in now-classic research on reinforcement learning showing 

that discrepancies between what is expected and what occurs trigger learning 

(Rescorla & Wagner, 1972), as well as in a rich neuroscience literature suggesting that 

prediction errors play a universal role in driving learning throughout the human brain (for an 

overview, see Bar, 2007; Henson & Gagnepain, 2010). From a cognitive psychology 

perspective, Fazio and Marsh (2009) showed that increased attention is allocated to surprising 
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feedback, which then leads to better memory (see also Butterfield & Metcalfe, 2006). In line 

with this account, a recent study demonstrated that the degree to which expectancies are 

violated predicts later memory (Greve, Cooper, Kaula, Anderson, & Henson, 2017).  

In a new line of work, Stahl and Feigenson (2015) demonstrated that 11-months-old 

infants show enhanced information-seeking and hypothesis-testing behaviors and learning for 

objects that appeared in episodes that violated expectations as compared to ones that were 

consistent with expectations. Recently, they demonstrated this benefit of surprise in children 

(aged 3–6) as well (Stahl & Feigenson, 2017). These findings led the authors to suggest that 

expectancy-violating events present special opportunities for learning. The facilitatory role of 

surprise for learning is in line with recent research showing that inducing confusion in a 

learner, for example by presenting contradictory information, leads to enhanced learning and 

transfer performance (D’Mello, Lehman, Pekrun, & Graesser, 2014). Confusion is suggested 

to occur after a surprise reaction when the expectancy-violating new information cannot be 

resolved right away, inducing a cognitive disequilibrium (D’Mello et al., 2014). In sum, this 

line of work has shown that expectancy-violating events can trigger learning, which might be 

due to the surprise response that is evoked by these events. 

Based on these prior studies on surprise, we hypothesize that one specific mechanism 

by which making a prediction is beneficial for learning is that it enables a learner to be 

surprised by events that refute the prediction. Many processes that are known to improve 

learning, including effortful retrieval, self-generation of a solution, curiosity, and learning 

from feedback, are invoked when generating a prediction. Here, we sought to test whether 

predicting outcomes boosts subsequent learning when controlling for various potentially 

confounding factors.  

Further, we sought to assess the extent to which surprise accounts for the benefit of 

prediction on learning. However, a common problem in research on surprise is how to 

measure and compare it across individuals, because asking participants to report their level of 
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surprise in response to an outcome is prone to systematic distortions (Schützwohl, 1998). One 

way to measure surprise objectively is via the pupillary response. Dilation of the pupil has 

been repeatedly shown to signal surprise (e.g., Kloosterman et al., 2015; Preuschoff, ’t 

Hart, & Einhäuser, 2011) and reflects the release of the neurotransmitter norepinephrine in the 

brainstem’s locus coeruleus, which regulates arousal (for an overview, see Aston-Jones & 

Cohen, 2005). Thus, surprise can be measured indirectly using pupillometry. 

Here, we report the results of an experiment with two tasks involving university 

students. These experimental tasks probed different domains of knowledge, but both involved 

a within-subject experimental design that contrasted a condition in which participants had to 

make a prediction (henceforth called ‘prediction condition’) with a condition in which 

participants had to make a post-hoc evaluation (henceforth called ‘postdiction condition’).  

The prediction and postdiction conditions differ only in the presentation order of the 

stimuli; participants have to state their expectations either before or after seeing the actual 

outcome (see Figure 1 for a graphical depiction of the study phase). Critically, both conditions 

require answering questions about the stimuli, and thus active engagement with the material 

and the activation of relevant prior knowledge. Better learning performance in the prediction 

condition would, thus, suggest that there are specific beneficial effects of generating a 

prediction that go beyond prior knowledge activation or active encoding. The current design 

represents a conservative test of the benefits of prediction for memory, because participants 

had considerably more time to encode the correct result in the postdiction condition (7.75 s 

instead of 3.5 s in the prediction condition), which they could use to engage in mnemonic 

strategies. 

The first experimental task, referred to below as the geography task, tested whether 

asking participants to make predictions as to which of two countries has a larger population 

helps them to learn about European geography. The second experimental task, referred to 

below as the soccer task, tested how generating predictions about the result of a soccer match 
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affects memory for results that conform to or violate expectancies, based on prior knowledge 

about various German soccer teams’ performance. The episodic nature of the task allowed us 

to directly test whether expectancy-violating events are better remembered in the prediction 

condition as compared to the postdiction condition.  

We collected eyetracking data while participants performed these tasks, with a view to 

measuring pupil diameter with high temporal resolution over the course of a trial. Comparing 

pupillary response patterns for the prediction and postdiction conditions allowed us to test 

whether generating a prediction increases surprise about expectancy-violating outcomes and 

thereby enhances learning. 

This study (including hypotheses, sampling, design, and analysis plan) was 

preregistered on the Open Science Framework (Brod, G., Bunge, S. A., & Hasselhorn, M. 

(2017, January 26, Does making a prediction improve memory? Retrieved from osf.io/v9fpu). 

In short, our main hypotheses were that generating a prediction would lead to a) better 

learning performance than post-hoc evaluation for both tasks, b) higher surprise about 

expectancy-violating outcomes, as indexed by a larger pupillary dilation, and c) the degree of 

this surprise reaction would be positively related to amount of learning via the updating of 

prior beliefs. 

 

2. Methods 

2.1 Participants 

Thirty-six students of Goethe University Frankfurt (20 women; mean age 23.1 years; range 

19–29) who gave written informed consent participated in the study. Sample size was 

determined a priori using G*Power with the following settings: t-test for dependent 

means, .05 alpha error, .90 power to detect a medium effect size of half a standard deviation 

(as found in pilot studies). Participants were recruited through bulletins within the university’s 

psychology and education building and student email lists of these two departments. The 
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advertisements stressed that participants had to have at least some interest in soccer. The two 

experiments took 60–90 minutes in total and participants were paid €15 or received course 

credit for their participation. Ethics approval was obtained from the ethics committee of the 

German Institute for International Educational Research. 

 

2.2 Study Design & Testing Procedures 

2.2.1 Overview 

Two computerized experimental tasks were performed in a single session: the geography task 

was performed first, followed by the soccer task. The two tasks were separated by a short 

break, during which participants could use the restroom. Each task took approximately 30 

minutes, including an initial knowledge assessment, a computerized eyetracking task (the 

study phase), and a final assessment of knowledge or memory. After each experimental task, 

participants were given a brief questionnaire in which they had to indicate on a scale from 1–6 

which of the two conditions (1= clearly prediction, 6 = clearly postdiction) they thought was 

more fun. Including the time required to provide instructions and calibrate the eye-tracker, 

this resulted in a total time of about 75 minutes to complete the whole experiment.  

Both tasks included two conditions: one prompted participants to make a prediction 

about the outcome before the answer was revealed (prediction condition); the other presented 

the outcome first and then asked participants to indicate which outcome they would have 

predicted (referred to below as the postdiction condition). Thus, in the prediction condition, 

prior knowledge had to be activated before seeing the actual outcome, whereas in the 

postdiction condition, prior knowledge had to be activated after seeing the outcome. The two 

conditions were performed within-subjects in separate blocks, and differed only in the 

presentation order of the stimuli; participants had to state their expectations either before or 

after seeing the actual outcome (see Figure 1). Critically, total presentation time of the stimuli 

was identical in the two conditions, and both conditions required the activation of relevant 
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prior knowledge. In the next two sections, we describe the specifics of the task designs and 

study procedures. 

2.2.2 Geography Task 

2.2.2.1 Design 

In the geography task, participants were asked, on each of a series of trials, to consider which 

of two countries had a larger population. The dependent measure was the change in hierarchy 

knowledge of the population size of European countries. Changes in knowledge were 

assessed via two knowledge tests, which consisted of rank ordering European countries by 

their number of inhabitants. Between these two assessments, participants completed the study 

phase, during which they made predictions for one block of trials, and post hoc evaluations 

for another block (Figure 1; see Procedures section for additional details). The length of the 

study phase (40 trials) was piloted to enable participants to gain knowledge of the countries’ 

population sizes while not enabling them to memorize the exact number of inhabitants per 

country so that they could not merely remember the exact number of inhabitants per country 

but had to perform inference. Participants, thus, acquired relational knowledge of European 

country populations – that is, a hierarchical knowledge structure that contains a consistent 

mapping of elements and relations, which enables transitive inference (see Halford, Wilson, 

& Phillips, 2012). Both the study phase and the final knowledge test, thus, involved a 

relational reasoning component, as participants had to try to infer and remember relations 

between countries that followed a consistent, hierarchical structure (Alexander, 2016). 

Assignment of hierarchy to condition as well as the ordering of the conditions was 

counterbalanced across participants. This design enabled us to compare the improvement in 

hierarchy knowledge between the prediction and postdiction condition. 

 Two hierarchies were used, with 12 different countries each; one for the prediction and 

one for the postdiction condition. The 24 most populous European countries (not including 

Germany) were used for this experiment, and were distributed to the two hierarchies using an 
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odd/even procedure (see Appendix 1). In between pre- and post-test, the study phase was 

performed (see Figure 1), in which participants saw 40 unique pairs of countries that were 

taken from the current 12-country hierarchy. Given the limited number of potential pairings 

(66 in total), we used all of the adjacent countries (14 pairs) and odd/even countries (1–3, 2–4, 

etc, 13 pairs). The remaining 13 pairs were selected pseudo-randomly from the remaining 

potential pairings. 

2.2.2.2 Testing Procedures 

The testing session started and ended with the knowledge test, in which the participants were 

asked to rank order 2 decks of 12 European countries (represented by the flag and the name 

below) by number of inhabitants, starting with the country that they thought had the most 

inhabitants. After participants were finished sorting the first deck (no time limit was imposed), 

the cards were removed and participants repeated the procedure with the second deck of cards. 

The second deck always contained the twelve countries they saw in the first computer task. 

Before the computerized task blocks were administered, participants were given time to 

familiarize themselves with the flags, and they were made aware of the fact that no country 

names would be shown in the task. Participants were told that during the following study 

phase they would see pairs out of these 12 countries along with the correct population sizes. 

They were not told to memorize those numbers, but were instead informed that they would be 

asked to sort the cards again after the computerized study phase was finished and thus that 

they should try to figure out the correct rank order. 

 Each of the two blocks started with four practice trials to familiarize participants with 

the task (prediction or postdiction). Next, participants saw 40 unique pairs of countries. To 

facilitate learning of the hierarchy, participants saw only six of the twelve countries during the 

first half of each block; only during the second half of each block did they see all of the 

countries. In the prediction block, participants were instructed to predict which country of 

each pair had the greater population size, and to do so while the question marks appeared on 
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the screen (i.e., ‘Response Phase’, see Figure 1).  Participants had to state their expectancy on 

a five-point scale (Far left: clearly the left country, Left: probably the left country, Middle: 

don’t know, Right: probably the right country, Far right: clearly the right country). The same 

scale was used in the postdiction condition, in which participants were instructed to make a 

post-hoc evaluation (“What would you have expected?”). After each block was completed, 

participants sorted the respective 12 countries again, following the same instructions as during 

the first knowledge test. Between the end of each block and the knowledge test, participants 

performed a 30 sec distractor task, which was counting backwards from 200 by sevens/threes 

as rapidly as possible. 

 

 
Figure 1. Schematic overview of the common study phase of the two paradigms, exemplified 
by the geography task. One exemplary trial is depicted per condition, which consisted of four 
different slides presented in the depicted order (duration times per slide are presented below 
the screens). In the prediction condition (upper half), participants had to make a prediction 
first and then saw the correct population sizes (in millions), whereas in the postdiction 
condition, they first saw the population sizes and then had to make a post-hoc statement 
regarding which results they would have predicted. Participants were only able to respond 
when the question marks appeared on the screen, using the same five-point scale for both 
conditions: Far left: clearly the left country, Left: probably the left country, Middle: don’t 
know, Right: probably the right country, Far right: clearly the right country). Details 
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regarding the purposes of the ‘Baseline Phase’ and ‘Pupil Baseline’ can be found in section 
2.4. For illustrative purposes, the background is shown in white and the print in black. For the 
real experiment, the background was gray and the print was white, so as to reduce luminance 
contrasts. The following details were changed for the soccer task (not shown due to copyright 
regulations): country flags were replaced by club logos; country populations were replaced by 
scores; and the labels of the five-point scale were adapted to the scores: Far left: >1 goal 
difference victory for the left team, Left: 1 goal victory for the left team, Middle: draw, Right: 
1 goal victory for the right team, Far right: >1 goal victory for the right team. 
 

2.2.3 Soccer Task 

2.2.3.1 Design 

In the soccer task, participants were asked to consider which of two soccer teams had won a 

particular match, and by how many points. Akin to the geography task, the prediction and 

postdiction conditions were performed in different blocks. Each block consisted of a study 

phase followed by a test phase.  The order of the blocks as well as the assignment of matches 

to blocks was counterbalanced across participants. In the study phase, participants had to 

predict/postdict the result of a soccer match between two teams of Germany’s first division 

and were then provided with the actual result (see Figure 1, country flags were replaced by 

club logos and country populations by scores). Participants saw 30 unique pairs of soccer 

teams in each study phase. In the test phase, participants saw all 30 pairings again and had to 

state the actual results of the match. Match results were taken from real matches that took 

place during the 2014/15 season. Matches were drawn from match days 24 to 33 during the 

soccer season and randomly assigned to the lists, thus assuring unique matches and similar 

frequency of teams.  

 We hypothesized that taking real results and telling participants that the results were 

real should enhance the relevance of participants’ prior knowledge (as noted previously, 

recruitment materials indicated that participants should be at least somewhat interested in 

soccer). However, since two teams always play twice against each other in the course of a 

season and the matches dated back two seasons, even participants with high soccer knowledge 
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could not know the actual results beforehand. This assumption was confirmed with a 

questionnaire administered after the experiment.  

 The dependent variable for the soccer task was the percentage of correctly retrieved 

results (i.e., correct differences), independent variables were condition 

(prediction/postdiction) and expectancy (match/violation). To assess participants’ prior 

knowledge of the relative strengths of the 18 teams and to ensure familiarity with the stimulus 

material (they were shown the club logos and the names), a knowledge test was performed 

prior to the beginning of the soccer task, as described below.  

2.2.3.2 Testing Procedures 

First, participants were instructed to rank order the 18 teams of the 2014-15 season of 

Germany’s premier soccer division by their final standing. They were then given time to 

familiarize themselves with the club logos, and were made aware of the fact that no club 

names would be shown during the computerized study phase. Before starting the study phase, 

they were told that they would now see real results of match from this season, which they 

should memorize for a subsequent memory test. No details were given regarding the specifics 

of the later memory test. 

 Procedure and instructions for the study phase were very similar to those for the 

geography task, i.e., the blocks also started with four practice trials and participants were 

instructed to predict / make a post-hoc evaluation regarding the likely outcome of the match. 

Participants again had to respond on a five-point scale: Far left: >1 goal difference victory for 

the left team, Left: 1 goal victory for the left team, Middle: draw, Right: 1 goal victory for the 

right team, Far right: >1 goal victory for the right team.  

 For the test phase, which followed shortly after the study phase, participants were told 

that they would now see all match pairs again and that they should try to recall the actual 

result of the match. They were instructed to answer using the same five-point scale that they 

had used during the study phase. 
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2.3 Stimulus Presentation & Eye-Tracking Data Acquisition 

Subjects were seated about 68 cm from the screen in a dimly lit room. The eye-tracking 

camera (EyeLink 1000, SR Research, Osgoode, Ontario, Canada) was located below the 

computer screen and recorded continuously throughout both experiments at a frequency of 

500Hz. Eye-tracking was performed to record changes in participants’ pupil size in response 

to the presentation of the correct outcome (i.e., during the ‘Results Phase’, see Figure 1). The 

key measure was the difference in the pupillary response between outcomes that match 

expectancies and those that violate expectancies. This difference can be interpreted as a 

measure of the amount of surprise experienced by a participant, and can be compared between 

the prediction and postdiction conditions.  

 Since the pupil is highly reactive to changes in luminance as well as to eye movements, 

the design of the study phase had to be tailored to the measurement of changes in pupil size. 

First, the ‘Baseline Phase’ was luminance-matched to the subsequent slides of the trial by 

presenting reshuffled images of the club logos in which their original luminance was 

preserved. The ‘Baseline Phase’ was included to avoid carry-over effects in pupil size from 

the previous trial. Second, a short ‘Pupil Baseline’ phase was introduced right before the 

‘Results Phase’. In the ’Pupil Baseline’ phase, participants saw the flags/logos alone for 750 

msec before the results were displayed on the screen. This was done to increase comparability 

of pupil size changes in the ‘Results Phase’ between the prediction and postdiction conditions. 

We piloted the duration of this phase to make sure that it was short enough to prevent 

participants from forming a prediction in the postdiction condition, but long enough to allow 

the pupil to adapt to the image. Third, to eliminate the need for larger saccades, which would 

interfere with accurate measurement of pupil diameter, all stimuli were presented close to the 

center of the screen, within a marked square. Fourth, stimuli were presented against a gray 

background, and white print was used to reduce luminance contrasts.  
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 Stimuli were presented using PsychoPy v1.8 (Peirce, 2007), an open-source 

application for conducting psychology experiments written in Python, and devices (including 

the eye-tracker) were controlled by the ioHub Event Monitoring Framework, a Python 

package. 

 

2.4 Data Analyses 

2.4.1 Performance data analysis 

Data were analyzed using R (R Core Team, 2014). The 𝛼𝛼 level was set at 0.05 throughout the 

analyses. For both tasks, an expectancy-violation was defined as a scale difference between 

expected and actual result of 2 or greater, which means that the actual result is also 

qualitatively different than the expected one.  

 For the geography task (Experiment 1), hierarchy knowledge was assessed by 

calculating the mean absolute difference between the estimated rank position and the true 

rank position. Thus, smaller differences represent greater knowledge. Improvement in 

hierarchy knowledge was defined as pretest - posttest accuracy. A within-subject t-test was 

calculated to test for condition differences in change in hierarchy knowledge. Two 

participants were excluded because they had exceptionally high prior knowledge of the 

country populations (defined as a mean absolute difference at pretest < 1), which left little 

room for improvement. Due to the fact that we did not anticipate such high prior knowledge 

and therefore did not specify this data exclusion criterion in the preregistration, we confirmed 

that including these participants in the analyses would not have altered the results reported 

below.  

 For the soccer task (Experiment 2), a repeated-measures ANOVA was performed with 

the percentage of correctly retrieved results (i.e., correct differences) as the dependent 

variable and condition (prediction, postdiction) as well as expectancy (consistent, violating) 

as within-subject factors. To be able to directly compare memory performance between 
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conditions for expectancy-consistent and expectancy-violating events, respectively, within-

subject t-tests were performed for each event type. Six participants were excluded due to 

chance level performance (20%), as specified in the preregistration. This left 30 participants 

for the analyses (see Figure 3 for a graphical depiction of the results). Including the six 

participants with chance level performance would not have altered the significance of any of 

the results reported for the smaller sample. 

 To assess performance differences between conditions, it was necessary to eliminate 

floor and ceiling effects. The between-task differences in data exclusion criteria stem from the 

different natures of the two tasks. In the geography task, we needed to ensure that participants 

did not have such high prior knowledge as to make learning impossible. In the soccer task, we 

needed to ensure that participants did not perform the episodic memory task at chance levels. 

Questionnaire data were evaluated using a one sample t-test comparing participants’ 

responses to the mean of the scale (3.5). 

2.4.2 Eye-Tracking data analysis  

For this study, we focused on the pupillometry data recorded during the study phase of the 

geography task. We originally sought to use the pupillometry data recorded during the study 

phase of the soccer task as well. However, in preparing to conduct these analyses, we found 

that the number of expectancy-violating trials was very low (mean: 8.5 trials per condition), 

which meant that eight participants did not even meet a liberal trial number criterion (> 5 

trials per condition), and there were many participants with less than expectancy-violating 10 

trials. This made us decide to not pursue pupillometry analyses in Experiment 2. 

Pupil data were analyzed in R using itrackR (https://github.com/jashubbard/itrackR) 

along with self-developed analysis scripts. First, eye-tracking data and behavioral data were 

merged. Second, periods of blinks were removed and interpolated using cubic spline 

interpolation. Third, pupil data were epoched relative to the onset of the ‘Results Phase’. To 

facilitate comparison of the pupillary response to seeing the actual outcome within and across 

https://github.com/jashubbard/itrackR
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subjects, pupil data were normalized by subtracting the diameter at each time point from the 

average diameter during the final 400ms of each trial’s ‘Baseline Phase’ and dividing by it. 

This results in a percentage signal change measure relative to the ‘Baseline Phase’. With this 

normalization, any nonspecific effect that lasts longer than an individual trial (e.g., arousal, 

fatigue) cannot confound the results. The average percentage change in pupil diameter was 

calculated per participant across the full ‘Results Phase’ (3.5 s), separately for outcomes that 

were consistent with vs. violated expectancies, and separately for the prediction and 

postdiction condition.  

To determine the pupil surprise response, the average percentage change in pupil 

diameter for expectancy-consistent outcomes was subtracted from the change in pupil 

diameter for expectancy-violating outcomes. T-tests were performed to determine statistical 

significance of the pupil surprise response in each condition and to test for condition 

differences. Finally, participants’ pupil surprise responses were correlated with their 

improvements in hierarchy knowledge to determine whether surprise enhances learning of the 

hierarchy. 

 

3. Results 

3.1 Generating a prediction improves learning  

In the geography task, participants strongly improved their hierarchy knowledge from pretest 

to posttest in both conditions (Prediction pre-test: 2.33 ± .62 (M ± SD); post-test: 0.90 ± .72; 

Postdiction pre-test: 2.12 ± .60; post-test: 1.11 ± .76). As is apparent in Figure 2A, a within-

subject t-test revealed a stronger improvement in hierarchy knowledge for the prediction as 

compared to the postdiction condition (t(33)=2.5, p = .01, Cohen’s d = .497). These results 

support our hypothesis that making a prediction benefits the updating of relational knowledge. 
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Figure 2. Geography Task Results. Panel A shows a greater increase in hierarchy knowledge 
in the prediction condition than in the postdiction condition. Error bars represent within-
subject standard error. Panels B and C show the full time series of the pupillary response in 
the prediction (B) and postdiction condition (C), separately for expectancy-consistent and 
expectancy-violating outcomes. Black lines indicate the duration of the ‘Results Phase’. 
Panels D and E show scatterplots relating the increase in hierarchy knowledge and the 
pupillary surprise response (expectancy-violating – expectancy-consistent during ‘Results 
Phase’), separately for prediction (D) and postdiction (E) conditions. 
 

 For the soccer task, a repeated-measures ANOVA revealed no main effect of condition 

(F(1, 29) = 1.03, p = .32, eta2
G  = .004), but a main effect of expectancy (F(1, 29) = 9.29, p 

= .005, eta2
G  = .09), indicating better memory for events that were consistent with 
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‘Results Phase’. In line with our predictions, the pupillary response was enhanced for 

expectancy-violating as compared to expectancy-consistent events in the prediction condition 

(t(32) = 2.61, p = .007). By contrast, there was no pupil surprise response in the postdiction 

condition (t(32) = -.25, p = .81). Accordingly, the pupillary violation of expectation response 

was greater in the prediction than in the postdiction condition (t(32) = 1.85, p = .037). These 

findings confirm that expectancy-violating events evoke a surprise response – but only when 

a prediction was made beforehand.  

3.3 Surprise is associated with learning 

To test whether surprise was associated with learning, we correlated participants’ pupil 

surprise responses with their subsequent improvements in hierarchy knowledge (see Figure 2). 

For the prediction condition, this analysis revealed a positive correlation between the strength 

of the pupil surprise response and the degree of improvement in hierarchy knowledge (r 

= .34; t(31)=2.0, p = .027). For the postdiction condition, no such relationship was observed (r 

= -.007; t(31)=-0.04, p = .971). Thus, the pupillometry data suggest that generating a 

prediction increases surprise about expectancy-violating outcomes, and that the degree of 

surprise experienced by participants is positively related to their updating of relational 

knowledge. 

 

4. Discussion 

Asking students to generate a prediction is a popular technique for activating prior knowledge 

and improving student learning, probably because it entails many of the cognitive processes 

that are known to improve learning in general, including engaging in effortful retrieval, 

generating a solution to solve a problem, eliciting curiosity, and learning from feedback. 

Whether there are specific beneficial effects of generating predictions has been unclear, 

however. Here, we sought to test whether guessing the answer to a question is more 

conducive to learning than reflecting on the answer after it is revealed.  
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Our study included two tasks that tapped into different types of memory: the first a 

relational knowledge task that tested knowledge of the relative sizes of different European 

countries, and the second an episodic memory task that tested memory for the results of 

soccer matches. The first task allowed us to test whether making a prediction benefits 

updating knowledge about the relative differences in countries’ populations, whereas the latter, 

testing memory for unique events, afforded a direct comparison between memory for 

expectancy-consistent and expectancy-violating events. We had hypothesized that one 

specific mechanism by which generating a prediction is beneficial for learning is that it 

enables a learner to be surprised by events that refute their prediction. Thus, we tested 

whether larger pupillary responses to unexpected outcomes would be associated with better 

learning. The results of the two tasks are not intended to be compared directly, but rather to be 

considered as complementary sources of evidence. Although the tasks were comparable in 

structure, they were not identical. For one thing, the nature of the pre- and post-tests were 

necessarily different, given the type of memory being probed. For another, the two tasks 

included different numbers of pairs (30 for the soccer task; 40 for the geography task). This 

difference emerged during piloting of the tasks and resulted from the different goals we had 

for the two tasks. For the soccer task, the goal was to keep episodic memory performance 

above chance. For the geography task, the goal was to enable the participants to gain 

knowledge of the countries’ population sizes while not enabling them to memorize the exact 

number of inhabitants per country. Participants were asked to focus on the relative differences 

in population, and to use relational reasoning to infer the correct rank ordering of the 

countries. 

In keeping with our hypotheses, we observed a greater extent of learning of the 

relative population sizes of European countries in the prediction than postdiction condition. 

Moreover, the pupillary surprise response to expectancy-violating events was present only in 

the prediction condition, and correlated positively with the improvement in relational 
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knowledge, as measured on the schema test. To ensure that the expectancy-violating events 

are the ones that benefit most from having made a prediction, we also collected learning 

success data on the individual trial level. These data, collected in the episodic memory 

paradigm, indeed revealed a specific memory benefit for expectancy-violating events in the 

prediction condition. No memory benefit was found for expectancy-consistent events. To 

conclude, findings of this study support our hypothesis that there is a specific benefit of 

prediction for learning, and that this effect is related in part to the surprise generated by 

expectancy-violating events. Furthermore, participants, who were students of education or 

psychology, found generating predictions to be more enjoyable than making post hoc 

judgments.  

In our episodic memory task, overall memory was better for events that matched 

expectancies as compared to those that violated expectancies (even though the difference was 

not significant in the prediction condition). This result is in line with a rich literature on the 

memory congruency effect (see Brod, Werkle-Bergner, & Shing, 2013; Stangor & McMillan, 

1992)), which is often observed in naturalistic memory tasks in which participants can 

successfully guess based on their prior knowledge (Bayen, Nakamura, Dupuis, & Yang, 2000). 

Guessing, then, benefits episodic memory accuracy for expectancy-matching events in the 

absence of true recollection. Due to this feature of expectancy-consistent outcomes, they are 

often excluded from further analysis. We chose to keep these events in the analyses to explore 

whether our condition manipulation also affected memory for expectancy-consistent 

outcomes, which was not the case. As a result of this null effect, overall memory performance 

did not differ between the prediction and postdiction condition in the episodic memory task. 

 This study contributes to an understanding of the specific mechanisms by which 

generating a prediction can improve learning. It suggests that generating a prediction enables 

the learner to be surprised about outcomes that refute the prediction, and that this surprise 

leads to an updating of knowledge structures. The elicited surprise, thus, makes generating 
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wrong predictions a productive exercise in failure (see also Kapur, 2016). It is worth noting 

that expectancy-violating outcomes do not in and of themselves seem to trigger surprise, as 

indicated by a lack of the pupil surprise response in the postdiction condition. Thus, explicit 

generation of a prediction seems necessary for surprise – and its beneficial effects – to occur. 

The pupillary surprise response can be considered a proxy for physiological arousal 

that is induced by norepinephrine release in the cortex by neurons in the locus coeruleus of 

the brainstem (Aston-Jones & Cohen, 2005). Release of norepinephrine has been shown to 

promote long-term memory formation as well as behavioral and neural adaptation by 

interacting with other neuromodulators in the hippocampus (for a review, see (McGaugh & 

Roozendaal, 2009).  On a cognitive level, this increased arousal likely increases attention to 

surprising outcomes (see Fazio & Marsh, 2009; Stahl & Feigenson, 2015). This enhanced 

attention may in turn lead to more effortful retrieval in attempting to resolve the incongruity, 

which is known to improve memory. Additionally or alternatively, this enhanced attention 

may induce a longer-lasting state of confusion (D’Mello & Graesser, 2014), which prompts 

more elaborative encoding (as suggested by D’Mello et al., 2014).  

A useful framework for how surprise may trigger learning has been provided by 

Mandler’s discrepancy theory (Mandler, 1990). The discrepancy theory posits that 

unpredicted outcomes result in a conflict between new information and existing schemata. 

This conflict/discrepancy results in an increase in arousal (i.e., a response by the autonomic 

nervous system) and a shift of attention to the discrepant information. According to Mandler 

(1990), the surprise response (i.e., the emotional reaction by an individual) can be interpreted 

as the initial, value-neutral consequence of this discrepancy. This suggestion is in line with 

the classification of surprise as an epistemic emotion (Pekrun & Stephens, 2012). Our 

findings provide support for these notions in that they demonstrate a pupillary surprise 

response to unpredicted outcomes, which was furthermore related to learning.  
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The present research also contributes to the long-standing debate among memory 

researchers as well as among social psychologists about the circumstances under which 

expectancy-consistent or expectancy-violating events are better remembered. Meta-analytic 

studies on the memory congruency effect (e.g., Stangor & McMillan, 1992) revealed several 

factors that influence whether expectancy-consistent or expectancy-violating events are better 

remembered. These factors include strength of expectancy, overall cognitive demands, 

participants’ goals, and the ratio between expectancy-consistent and expectancy-violating 

events. We can now add another circumstance to this list, which is whether a specific 

prediction has been made prior to seeing the event. Making a prediction likely increases the 

strength of expectancy and, thereby, the perceived expectancy-violation and the surprise 

experienced by the learner, which then leads to better memory.  

Results of these meta-analytic studies also suggest that there may be situations in 

which being asked to make a prediction is not beneficial, for example when overall cognitive 

demands are already high. This possibility could be tested in future pupillometry studies, 

given that pupils dilate as cognitive demands increase (Kahneman & Beatty, 1966; Van 

Gerven, Paas, Van Merriënboer, & Schmidt, 2004). It seems plausible to assume that the 

pupillary surprise response will be dampened if general arousal is high, but this hypothesis 

needs to be tested empirically. 

On the whole, we do not mean to imply that asking students to generate a prediction is 

always the best way to activate prior knowledge and boost learning. First, there is simply a 

lack of studies directly comparing the effectiveness of different knowledge activation 

strategies. Second, generating a prediction is probably not feasible under all circumstances 

(e.g., for learning non-categorical information). Third, outcomes that were predicted 

incorrectly may not necessarily yield surprise in all learners, for all materials. As stressed by 

Limón (2001), instructional strategies that build upon inducing conflict in learners often fail 

in the classroom because the learners do not experience meaningful conflict. Our findings are 
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in line with this account as the observed lack of a surprise response in the postdiction 

condition indicates that the existence of a conflict is not enough to trigger a physiological 

trace of surprise, which in turn may be a prerequisite for experiencing conflict or confusion. 

Reasons for this lack of a surprise response could include a lack of interest, motivation, or 

prior knowledge. Thus, it seems reasonable to assume that generating a prediction will only 

yield a surprise response when at least basic levels of engagement and knowledge are present 

in the learner. 

 Aside from surprise, other factors could have contributed to the beneficial effect of 

prediction. This condition likely evoked curiosity (Inagaki & Hatano, 1977), which enhances 

motivation and is posited to boost learning (Kang et al., 2009). Students’ self-reported higher 

enjoyment in the prediction condition is in accordance with this speculation. Also, one might 

argue that retrieval was less effortful in the postdiction condition because participants did not 

need to generate their own prediction but only had to assess the plausibility of the actual 

outcome given their prior knowledge. More difficult retrievals have been shown to lead to 

better memory than less difficult retrievals (Pyc & Rawson, 2009). While we cannot 

definitively rule out the possibility that differences in curiosity and effortful retrieval 

contributed to the observed benefits for the prediction condition, they are highly unlikely to 

have driven the condition differences entirely given the predictive value of the pupil surprise 

response and the results of the episodic memory task. In the latter task, we found a condition 

x expectancy interaction, suggesting that generating a prediction is only beneficial for 

remembering events that violated expectancies. Future studies might further explore the 

contributions of curiosity and effortful retrieval to the beneficial effects of prediction by 

assessing and/or manipulating these factors directly. 

 This study was intended as a first attempt to identify the specific mechanisms by 

which generating a prediction and experiencing surprise are beneficial for learning. Further 

studies are needed to establish the external validity of these findings, by testing whether the 
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beneficial effects are long-lasting and can be observed in more complex domains, such as 

conceptual change or scientific reasoning. Future studies should also compare generating 

predictions to other generative learning activities, such as providing examples or explanations 

(e.g., Endres, Carpenter, Martin, & Renkl, 2017; Legare & Lombrozo, 2014). Nevertheless, 

having found beneficial effects in two different domains makes us optimistic that they can be 

found across a wide range of situations. Another question that this study has raised but not 

answered is how participants’ familiarity with the to-be-remembered items interacts with their 

perceived surprise about expectancy-violating events; to answer this question, pretest 

familiarity ratings at the item level would be necessary.  

 A further next step will be to test whether the observed benefits of generating a 

prediction also hold for school children. Inviting children to generate predictions may be a 

promising tool for fostering their scientific literacy, for at least two reasons: First, children do 

not spontaneously use memory strategies that activate their prior knowledge until around the 

end of elementary school (e.g., Hasselhorn, 1990). Thus, techniques that lead children to 

activate their knowledge may prove beneficial. Second, the cognitive conflict induced by a 

wrong prediction may help children overcome scientific misconceptions (Vosniadou, 

Ioannides, Dimitrakopoulou, & Papademetriou, 2001). In sum, it is important to follow up on 

these findings in school children, and using more school-related tasks. 

Successful classroom curricula exist that incorporate generating predictions and 

receiving feedback (e.g., “Predict-Observe-Explain”, see Champagne, Klopfer, & Anderson, 

1980; Gunstone & White, 1981; Liew & Treagust, 1995). Generating predictions has also 

been integrated in interactive computer programs in which students can individually go 

through prediction–feedback cycles (e.g., genotype–phenotype relations, see Tsui & Treagust, 

2003). It also forms part of many study methods that include testing or self-testing (e.g., 

flashcards). However, although the utility of asking students to generate a prediction as a 

means to activate their prior knowledge has been proposed before (cf. Anderson, 1977), its 
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specifics have remained opaque. We have observed a specific beneficial effect of prediction 

that does not form part of other generative learning techniques (e.g., generating examples or 

explanations), which is that generating a prediction allows for surprise. Evoking surprise in 

students has not been a major target in educational curricula thus far, even though already a 

single, surprising numerical fact can lead to long-lasting conceptual change (Clark & Ranney, 

2010; Munnich, Ranney, & Bachman, 2005).  Our results suggest that asking students to put 

their cards on the table by making a prediction seems a fruitful approach to harnessing the 

power of surprise. In addition, recent advances in mobile technologies (e.g., smartphones, 

tablets) will further simplify the way in which students’ predictions can be collected and 

feedback can be provided.  

 In conclusion, this research demonstrates that there is a specific benefit of generating a 

prediction for learning, and that this benefit is at least in part mediated by the surprise 

generated by expectancy-violating events. It presents convergent evidence from several 

approaches – in this case, behavioral and psychophysiological – and has theoretical 

implications for our understanding of human cognition as well as practical implications for 

the development of good instructional practices and study habits. This work establishes a 

solid foundation for further research on this pedagogical tool, both in laboratory and 

classroom settings.  
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Figure Captions 

 

Figure 1. Schematic overview of the common study phase of the two paradigms, exemplified 

by the geography task. One exemplary trial is depicted per condition, which consisted of four 

different slides presented in the depicted order (duration times per slide are presented below 

the screens). In the prediction condition (upper half), participants had to make a prediction 

first and then saw the correct population sizes (in millions), whereas in the postdiction 

condition, they first saw the population sizes and then had to make a post-hoc statement 

regarding which results they would have predicted. Participants were only able to respond 

when the question marks appeared on the screen, using the same five-point scale for both 

conditions: Far left: clearly the left country, Left: probably the left country, Middle: don’t 

know, Right: probably the right country, Far right: clearly the right country). Details 

regarding the purposes of the ‘Baseline Phase’ and ‘Pupil Baseline’ can be found in section 

2.4. For illustrative purposes, the background is shown in white and the print in black. For the 

real experiment, the background was gray and the print was white, so as to reduce luminance 

contrasts. The following details were changed for the soccer task (not shown due to copyright 

regulations): country flags were replaced by club logos; country populations were replaced by 

scores; and the labels of the five-point scale were adapted to the scores: Far left: >1 goal 

difference victory for the left team, Left: 1 goal victory for the left team, Middle: draw, Right: 

1 goal victory for the right team, Far right: >1 goal victory for the right team. 

 

Figure 2. Geography Task Results. Panel A shows a greater increase in hierarchy knowledge 

in the prediction condition than in the postdiction condition. Error bars represent within-
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subject standard error. Panels B and C show the full time series of the pupillary response in 

the prediction (B) and postdiction condition (C), separately for expectancy-consistent and 

expectancy-violating outcomes. Black lines indicate the duration of the ‘Results Phase’. 

Panels D and E show scatterplots relating the increase in hierarchy knowledge and the 

pupillary surprise response (expectancy-violating – expectancy-consistent during ‘Results 

Phase’), separately for prediction (D) and postdiction (E) conditions. 

 

Figure 3. Soccer Task Results. Memory performance, separately for the prediction and 

postdiction condition, and for expectancy-consistent and expectancy-violating events. Error 

bars represent within-subject standard error. 

 
 
 
 
 
Appendix 1. Country lists used in the experiment. 

List 1 
Population (in 
million) List 2 

Population (in 
million) 

France 66.35 Great Britain 64.77 
Italy 60.8 Spain 46.44 
Poland 38.01 Romania 19.86 
Netherlands 16.9 Belgium 11.26 

Greece 10.81 
Czech 
Republic 10.54 

Portugal 10.37 Hungary 9.85 
Sweden 9.75 Austria 8.58 
Switzerland 8.08 Serbia 7.1 
Bulgaria 7.2 Denmark 5.66 
Finland 5.5 Slovakia 5.42 
Norway 5.08 Ireland 4.63 
Croatia 4.23 Lithuania 2.92 

  


