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Cognitive Prerequisites for Generative Learning: Why Some Learning
Strategies Are More Effective Than Others
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Garvin Brod
DIPF Leibniz Institute for Research and Information in
Education and Goethe University Frankfurt

This study examined age-related differences in the effectiveness of two generative learning strategies (GLSs).
Twenty-five children aged 9-11 and 25 university students aged 17-29 performed a facts learning task in
which they had to generate either a prediction or an example before seeing the correct result. We found a sig-
nificant Age x Learning Strategy interaction, with children remembering more facts after generating predic-
tions rather than examples, whereas both strategies were similarly effective in adults. Pupillary data indicated
that predictions stimulated surprise, whereas the effectiveness of example-based learning correlated with chil-
dren’s analogical reasoning abilities. These findings suggest that there are different cognitive prerequisites for
different GLSs, which results in varying degrees of strategy effectiveness by age.

Constructivism conceives learning as an active pro-
cess whereby learners themselves construct rela-
tions between their existing knowledge and new
experiences (Piaget, 1926; Vygotsky, 1978; Wittrock,
2010). An increasingly prominent example of a
group of learning strategies inspired by construc-
tivist theories of learning are called generative
learning strategies (GLSs; Fiorella & Mayer, 2016).
GLSs prompt learners to actively make sense of the
to-be-learned information and to integrate it with
their prior knowledge (Fiorella & Mayer, 2016; Wit-
trock, 2010). GLSs can be expected to improve
memory performance because they introduce a
desirable difficulty (Bjork, 1994; Bjork & Bjork,
2011); that is, learners are asked to retrieve prior
knowledge instead of simply re-reading the infor-
mation. The retrieval process itself presents a more
powerful learning opportunity than re-studying of
the material for long-term retention (Karpicke &
Roediger, 2008; Roediger & Karpicke, 2006). In line
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with these considerations, GLSs have been found to
foster various learning outcomes compared to more
passive learning activities (Dunlosky, Rawson,
Marsh, Nathan, & Willingham, 2013; Fiorella &
Mayer, 2016; Lee, Lim, & Grabowski, 2008).
Although constructivist theories of learning were
initially put forward with a view to explain devel-
opmental differences in learning (Piaget, 1926;
Vygotsky, 1978), research comparing the effective-
ness of GLSs between different age groups has been
surprisingly sparse. Studies that did include a
wider age range typically focused only on one strat-
egy and either did not compare age groups directly
or, if they did, treated age as a surrogate for vary-
ing levels of prior knowledge (e.g.,, Chularut &
DeBacker, 2004; Gurlitt & Renkl, 2008). A key find-
ing from these studies has been that GLSs should
be adapted to provide greater support for (mostly
younger) learners with lower prior knowledge
(Gurlitt & Renkl, 2008). However, in addition to
age-related differences in prior knowledge, the
effectiveness of GLSs is likely also affected by dis-
tinct cognitive mechanisms underlying different
GLSs. Since different GLSs achieve active integra-
tion of new information in different ways (e.g., by
asking learners to generate explanations or to
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generate examples), they rely on different cognitive
abilities (e.g., verbal abilities, reasoning abilities),
which follow different developmental trajectories
(see Li et al., 2004). It is therefore plausible to
assume that the relative effectiveness of different
GLSs varies depending on the age of the learner.
Knowledge of these differences would be crucial for
selecting optimal GLSs for learners of all ages.

The present study tested these notions by compar-
ing two commonly used GLSs that could be expected
to differ in their underlying cognitive mechanisms:
generating predictions and generating examples.

Asking learners to generate a prediction (also
known as generating hypotheses) before telling
them the correct solution requires learners to
engage in effortful retrieval of relevant prior knowl-
edge, and thus qualifies as a comparably simple
GLS. Even when participants do not have extensive
prior knowledge to build their prediction on and
can, thus, only guess, this has been shown to
improve their learning (Huelser & Metcalfe, 2012;
Metcalfe & Kornell, 2007; Potts & Shanks, 2014;
Richland, Kornell, & Kao, 2009). However, retrieval
failures that are committed with high confidence
have been shown to lead to greater learning than
those committed with low confidence (Butterfield &
Metcalfe, 2001, 2006). A possible mechanism under-
lying this hypercorrection effect is increased atten-
tion to surprising outcomes (Butterfield & Metcalfe,
2006), which aligns well with research on generat-
ing predictions. A recent study (Brod, Hasselhorn,
& Bunge, 2018) found that generating a prediction
enabled learners to experience surprise about the
correct solution. Surprise was linked to enhanced
learning, presumably by increased attention to task-
relevant information (see Fazio & Marsh, 2009;
Stahl & Feigenson, 2019). In line with reconsolida-
tion theory (Alberini & LeDoux, 2018) and predic-
tive coding (Friston, Thornton, & Clark, 2012),
surprise may drive the destabilization and updating
of stored memories in light of new information
(Sinclair & Barense, 2018). Furthermore, generating
a prediction might also affect metamemory as a
prediction followed by feedback forces learners to
perform a memory search and gives them clues
about the accuracy of this search (Koriat, 1993).
Whether the surprise induced by violated predic-
tions also facilitates learning in children has not yet
been directly investigated. However, related
research suggests that the surprise response to
expectancy-violating  events is  age-invariant
(Schiitzwohl & Reisenzein, 1999), that pupillary
reactions reflect surprise already in infants (Jackson
& Sirois, 2009), and that expectancy-violations
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promote declarative learning in children as young
as 3 years old (Stahl & Feigenson, 2017).

Asking learners to generate examples is a tech-
nique often used in the context of concept learning
(e.g., Gorrell, Tricou, & Graham, 1991; Rawson &
Dunlosky, 2016). Tying an abstract concept to a con-
crete example and, thus, encoding it as part of an
interrelated semantic network is meant to make the
concept more meaningful, thus fostering its under-
standing (Bjork, 1994). Even though example quality
is strongly correlated with successful concept learn-
ing, learning success rather depends on the processes
involved in example generation than on the exam-
ples themselves (Rawson & Dunlosky, 2016). To suc-
cessfully generate examples, learners need not only
to activate relevant prior knowledge but also to com-
pare potential examples with the abstract concept as
well as among each other to determine their appro-
priateness. Example generation therefore requires
analogical reasoning (Duit, 1991), which undergoes
large developmental changes during childhood and
adolescence (Gentner & Toupin, 1986; Richland,
Morrison, & Holyoak, 2006). It is, thus, conceivable
that the processes involved in successful example
generation differ by age, which could lead to age-re-
lated differences in the effectiveness of this strategy.

We compared generating predictions and gener-
ating examples between 9- and 11-year-olds and
university students. Participants had to learn
numerical trivia facts for an immediate recall test
under each GLS condition. We chose children in this
age range because late childhood marks a period
where basic reasoning abilities are in place but not
yet fully mature, with large individual differences
among children (see Richland et al., 2006). The key
hypothesis guiding this study was that the learning
benefits of prediction over example generation
would be greater in children than in adults (ie.,
Age x Learning Strategy interaction). Based on
findings in adults suggesting that generating predic-
tions has the specific benefit of boosting surprise
(Brod et al., 2018), we assessed changes in pupil
diameter to investigate whether surprise contributed
to the assumed beneficial effects of generating pre-
dictions in children. In addition, we explored
whether, among the children, reasoning abilities and
executive functions (EFs) differentially affected the
effectiveness of the two learning strategies.

Method

This study (including hypotheses, sampling plan,
design, and analysis plan) was preregistered on the
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Open Science Framework (https://osf.io/e4h9n/?
view_only=37f9109f122b42faaec678796b225037).

Participants

We tested 26 university students of Goethe
University Frankfurt and 26 children between
November 2017 and June 2018. One university stu-
dent did not meet the predefined inclusion criteria
of speaking German at native-speaker level, and
one child did not attend Grade 4 or 5; we therefore
discarded their data. The final sample consisted of
25 young adults (17 female; M,g = 21.24,
range = 17-29) and 25 children of Grades 4 and 5
(10 female; 19 in Grade 4; M,g. = 9.84, range = 9-
11). We sought to keep age variability among chil-
dren low to ensure comparatively similar cognitive
development. We therefore tested primarily 10-
year-olds, but, for feasibility reasons, ended up also
testing five 9-year-olds and one 11-year-old. All
participants came from middle-class households. As
stated in the preregistration, sample size was deter-
mined a priori using GPower 3.1 (Faul, Erdfelder,
Buchner, & Lang, 2009) with the following settings:
analysis of variance (ANOVA) for repeated mea-
sures, within-between interaction, .05 alpha error,
95 power to detect an effect size of (V) = 0.52 (as
found in pilot studies). All participants as well as
children’s parents gave written informed consent
prior to testing. Sessions lasted about 60 min for
young adults and about 75 min for children. Young
adults received 10 Euro or course credit for their
participation. Children were given a toy worth 5
Euro and their parents received 5 Euro to cover
their travel expenses. We recruited the university
students through bulletins at Goethe University
Frankfurt as well as announcements in student
groups on social media. We recruited the children
via a database of children who participated in pre-
vious studies of our research group as well as an
email distributor that disseminates information to
parents of children in Grade 4 in the area of Frank-
furt/Germany. Ethics approval was obtained from
the ethics committee of DIPF|Leibniz Institute for
Research and Information in Education.

Measures and Procedure
Overview

After written informed consent was obtained, the
test session started with the tasks measuring EFs.
This was followed by the numerical facts learning
task, which consisted of two study—test cycles (one

per condition). We performed eye tracking during
both study phases. After finishing the numerical
facts learning task, the group of children addition-
ally completed the analogical reasoning task.

Numerical Facts Learning Task

We examined the effect of GLS condition (gener-
ating predictions vs. generating examples) on learn-
ing  performance using a  computerized
experimental task, which consisted of a study phase
and a test phase for each condition, respectively.
Participants performed the GLS conditions succes-
sively (i.e., study phase l1—test phase 1—study
phase 2—test phase 2), the order being counter-bal-
anced across participants.

Each study phase (see Figure 1) started with
three practice trials, followed by 30 numerical facts
in the format “X out of 10” (e.g., “X out of 10 ani-
mal species are insects”). The format remained the
same for all trials, thus not requiring varying alge-
braic operations from children. Experimenters made
sure that all children understood the concept of “X”
standing for a number. In the prediction condition
and in the memory test, a visual analogue scale
(VAS) was used (see below) to further aid intelligi-
bility of the task for participants with low numer-
acy skills (e.g., Galesic, Garcia-Retamero, &
Gigerenzer, 2009). Stimuli were presented using
PsychoPy v1.8 (Peirce, 2007). Participants first per-
formed the generative task and, after a brief delay,
saw the correct number for the placeholder “X.”
Participants were instructed to remember the cor-
rect results for the subsequent memory test. The
correct numbers ranged from “1” to “9”.

The two GLS conditions only differed in the gen-
erative activity that took place at the beginning of
each trial. In the prediction condition, participants
indicated their expectation for the correct number
on a 10-point VAS (portraying ten manikins to
make the task more intuitive for children). In accor-
dance with the definition of GLSs (Fiorella &
Mayer, 2016; Wittrock, 2010), doing so required
learners to activate relevant prior knowledge to
come up with an informed guess. Their response
was then highlighted for 1 s. In the example condi-
tion, participants had to generate an example rele-
vant to the fact. They were instructed to click on
the smiley as soon as they had found an example,
or to click on the red button if they could not find
any. The experimenter stressed that participants
should only click on the smiley if they had actually
found an example and, to ensure task compliance,
mentioned that participants would be asked to


https://osf.io/e4h9n/?view_only=37f9109f122b42faaec678796b225037
https://osf.io/e4h9n/?view_only=37f9109f122b42faaec678796b225037

Prerequisites for Generative Learning 261

Prediction Condition Example Condition
- Xoutof 10 X out of 10
3] Animal Species are Insects Animal Species are Insects
&
s Example of an Insect
v © AAaRRARRASRS (-
©
)
2 <
© §e]
o © X out of 10
8 S Animal Species are Insects
(7]
© 3
n w
q’ had
2 AARARARRaR
2
[%2}
0
o
?
o X out of 10
o Animal Species are Insects
S
©
o
Qo
|=
<
b 7 out of 10
S Animal Species are Insects
o
2
=
[72]
Q
o
[72]
=
5| —
©
£ >
7oL
il e
3=
£

Figure 1. Schematic overview of the study phase of the numerical facts learning task. At the beginning of each trial, participants had to
either generate a prediction for the correct value of “X” (prediction condition) or an example that corresponded to the fact (example
condition). After a brief delay, the correct result was presented. [Color figure can be viewed at wileyonlinelibrary.com]
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provide some of their examples later on. A sample
of eight examples was collected after completion of
the task (see Table S1).

Participants performed an unrelated digit span
backwards task (ca. 1 min) upon completion of the
study phase to ensure that the facts were cleared
from short-term memory. During the test phases,
participants saw the 30 facts again and had to
indicate the correct results on the VAS. Responses
were highlighted for 1s before the start of the
next trial.

Upon completion of the numerical facts learning
task, young adults filled out a brief questionnaire in
which they indicated (a) which facts they had
known prior to the experiment, (b) which condition
was more enjoyable (on a scale from 1, clearly pre-
diction, to 6, clearly example), and (c) whether they
thought they had learned more in the prediction
condition or in the example condition (using the
same 6-point scale), and why. Children’s answers
to these questions were recorded by the experi-
menter.

Moderators

Reasoning abilities. ~ We measured children’s
reasoning abilities with the analogies subtest of the
SON-R 6-40 (Tellegen, Laros, & Petermann, 2012).
The test was chosen because it is highly reliable in
the age range of our study (0.86-0.88 for children
age 9-11). Each item of the paper-and-pencil test
showed two figures next to each other, with the
right one being obtained from the left one by
changing one or more features. Children had to
deduct the conversion rule and apply it to a new
figure. The test involved an adaptive testing proce-
dure with a maximum of 36 items.

Executive functions. ~ We used a slightly modi-
fied version of the Hearts and Flowers Task (HFT;
Wright & Diamond, 2014) to measure executive
functioning. The task parameters and the testing
procedure were identical to those reported by Brod,
Bunge, and Shing (2017). (The task, including the
exact stimuli and stimulus lists, can be found at
https:/ /osf.io/c8gbj/.) In short, the task consisted
of three blocks with 20 trials each, each block
requiring increasing levels of executive functioning.
In the first block (congruent condition), a heart
appeared on the left or right side of the screen and
participants had to press a button on the same side.
In the second block (incongruent condition), a
flower was presented and participants had to press
the button on the opposite side. In the third block
(mixed condition), heart and flower trials were

intermixed, and participants had to switch between
the previously learned rules.

In addition to the HFT, participants performed
an open-source version of the Wisconsin Card Sort-
ing Test, called the Berg Card Sorting Test (BCST;
Fox, Mueller, Gray, Raber, & Piper, 2013). We
decided to focus on the HFT as our measure of EFs
because the HFT is specifically tailored to the
assessment of EFs, whereas the BCST is a broader
measure of prefrontal cortex function (Diamond,
2013) and might, thus, potentially overlap with rea-
soning abilities. Scores from the HFT and BCST cor-
related moderately (r =.37, p =.035, one-tailed)
and results were highly similar (see Supporting
Information).

Eye Tracking Data Acquisition

We performed eye tracking throughout both
study phases of the numerical facts learning task at
a frequency of 500 Hz. The eye tracking apparatus
(EyeLink 1000; SR Research, Osgoode, Ontario,
Canada) was located below the computer screen.
Subjects were seated about 68 cm from the screen
in a dimly lit room.

Our interest lay in pupil size changes in response
to the presentation of the correct number (i.e., dur-
ing the results phase, see Figure 1). The anticipation
phase served as a “pupil baseline” and was there-
fore closely matched to the luminance of the results
phase. We further sought to minimize eye move-
ments by instructing participants to pay close atten-
tion to the target position “X” when awaiting the
presentation of the correct result.

Data Analyses

We analyzed data using R (R Core Team, 2014)
and applied an o level of .05 throughout the analy-
ses. We performed logistic mixed-effects regression
models for the analysis of effects on memory per-
formance and linear mixed-effects models for all
other analyses that included multiple measurements
per condition. We report odds ratio (OR) as an
effect size measure for the logistic models and
adjusted pseudo R* for the linear models using the
R package MuMIn (Barton, 2018). Deviating from
our preregistered analysis plan, we included not
only a random intercept but the full random effects
structure for participants and a random intercept
for items to avoid type I errors due to an underesti-
mation of standard errors (Brauer & Curtin, 2018).
We did not include a random slope for items
because inclusion would have led to non-
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convergence for some models and its correlation
with the random intercept was estimated at 1.00.
Compared to our preregistered analysis plan, these
deviations did not lead to any differences in the
pattern of results or in the interpretation, however.
Significance was determined by conducting likeli-
hood-ratio tests between the full model and a
reduced model without the fixed effect in question
while keeping the random effects structure the
same; in the presence of an interaction term, we
tested main effects by converting factors to sum-
coded numeric representations (Levy, 2014).

We analyzed the combined effects of GLS condi-
tion and age on performance in the numerical facts
learning task as specified in our preregistered anal-
ysis  plan  (https://osf.io/e4h9n/?view_only=37f
9109f122b42faaec678796b225037). We considered all
other analyses exploratory. Specifically, we
explored (a) whether the assumed performance dif-
ference between generating predictions and generat-
ing examples was linked to children’s reasoning
abilities or EFs, (b) whether generating predictions
had the specific effect of boosting surprise, (c)
whether the pupillary response was differentially
predictive of learning in the two age groups and
conditions, and (d) whether the strength of this link
predicted the performance difference.

Analysis of the Pupillary Data

The main goal of the pupillometry analyses was
to test the hypothesis that generating predictions,
unlike generating examples, elicits a surprise
response during result presentation, and that this
surprise response mediates the benefit of predic-
tions on learning. Pupillary reactions to expec-
tancy-violating events are an objective measure of
surprise (e.g., Kloosterman et al., 2015; Preuschoff,
‘t Hart, & Einhauser, 2011) and can be observed
already in infants (Jackson & Sirois, 2009).
Changes in pupil diameter reflect the release of
the neurotransmitter noradrenaline in the locus
coeruleus (LC). LC activity regulates task-related
arousal and is associated with the optimization of
task performance (for an overview, see Aston-
Jones & Cohen, 2005). Baseline pupil diameters
change with age (Eckstein, Guerra-Carrillo, Miller
Singley, & Bunge, 2017) and vary from person-to-
person and trial-to-trial. Therefore, pupillary reac-
tions to task stimuli are not measured as absolute
sizes but as relative changes from baseline at the
start of each trial to make them comparable
between persons and conditions (cf. Sirois & Bris-
son, 2014).
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The following preprocessing steps were per-
formed in R to prepare the pupil data for further
analyses: First, we fitted local regressions (loess) to
the data, using 300 data points on each side of the
regressed point to calculate the fitted value. We fil-
tered data points more than five standard errors
smaller or bigger than the fitted value. Second, we
used the loess values to interpolate missing values
in the time series unless the gap was longer than
100 data points (i.e., 200 ms). Third, we smoothed
time series data with a moving average, using 25
samples on each side of the smoothed data point.
Finally, we aligned pupil data relative to the onset
of the results phase, and normalized it by subtract-
ing the diameter at each time point from the aver-
age diameter in the interval 300 ms before the onset
until 100 ms after the onset. The resulting signal
change measure was unconfounded from any non-
specific effect (e.g., arousal or fatigue) that lasted
longer than an individual trial. We excluded trials
with less than 20% valid pupil samples from analy-
ses (children: M =527%, range = 0%-31.67%;
adults: M = 1.93%, range = 0%—26.67%).

For each trial, we calculated the average change
in pupil diameter for the time interval starting
250 ms after the onset of the results phase until
2,500 ms after the onset to obtain a marker of the
surprise response. We chose this time interval based
on a previous study (Brod et al.,, 2018) and in line
with the conceptual understanding of surprise as
the initial, value-neutral consequence of a perceived
discrepancy (Mandler, 1990). We originally
intended to explore changes in pupil diameter dur-
ing the generative task as well, but refrained from
doing so because of the confounding influence of
differences in image content between the two con-
ditions (Naber & Nakayama, 2013).

Results
Performance Analyses

We discarded trials that participants had known
prior to the experiment (children: M = 0.47%,
range = 0%-5.00%; adults: M = 0.27%, range = 0%-—
3.33%) and trials for which no example was found
in the example condition (children: M = 7.73%,
range = 0%—23.33%; adults: M = 1.20%,
range = 0%—6.67%).

Study Phase Performance

On average, children predicted 10.27% of facts
correctly (SD = 5.08%; range = 3.33%—-23.33%) and
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young adults predicted 14.93% of facts correctly
(5D = 4.92%; range = 6.67%—26.67%), the difference
being significant (#(48) = 3.30, p = .002). Children
did not find an example in 7.73% of trials
(SD = 7.25%; range = 0%-23.33%) and young adults
could not find an example in 1.20% of trials
(5D = 2.13%; range = 0%—6.67%). This difference
was also significant (#(48) = 4.33, p < .001).

It took adults 5.61 s (SD = 2.14 s), on average, to
generate a prediction and 5.52s (SD = 2.06 s) to
generate an example, whereas children needed
752 s (SD =1.67 s) to generate a prediction and
797s (SD=281s) to generate an example.
Because response time (RT) data were positively
skewed, we analyzed it using generalized estimat-
ing equations (GEE), which are appropriate for the
modeling of non-normal distributions. The interpre-
tation of results remained the same regardless of
whether GEE, log-transformed data, or a linear
model with raw data were used. We discarded
three trials for which a RT of O0s had been
recorded. We found a significant effect of age
(£*(1) = 17.10, p < .001), but no significant effect of
condition (4°(1) = 0.37, p = .540), and no interaction
(1) = 0.73, p = .390).

Following the study phase, participants were
asked about the examples that they had generated
for a subset of 8 items. On average, children and
adults generated less than one example that did not
fit the item (children: M = 0.44, range = 0-2; adults:
M = 0.08, range = 0-1); they could not think of any
example in less than one case (children: M = 0.68,
range = 0-3; adults: M = 0.12, range = 0-1), and
could not remember the example they had gener-
ated during the task for less than one item (chil-
dren: M =0.32, range = 0-2; adults: M = 0.28,
range = 0-2). We, thus, have no indication that
finding examples was excessively difficult for either
age group.

We converted ratings on the questionnaire into
categorical values to make them comparable
between age groups since adults had rated the
items on a 6-point scale, whereas children had been
asked by the experimenter without mention of the
response scale. We performed chi-squared tests to
see if one answer was more likely within each age
group and if the frequencies differed between age
groups. Eighteen children (2(1) = 4.84, p = .028)
and 13 adults (°(1) = 0.04, p = .842) reported that
they found learning in the prediction condition
more enjoyable than in the example condition. The
distributions were not significantly different
between age groups (A1) = 2.12, p = .145). Ten
children (3*(1) =1.00, p=.317) and 14 adults

(1°(1) = 0.67, p = 414) thought that they had
learned more in the prediction condition. The distri-
butions did not differ significantly (A1) = 1.65,
p =.199). 75% of adults and 56% of children were
accurate in their judgment regarding which condi-
tion they learned better in. The difference between
age groups was not significant (#(46.59) = 1.40,
p = .168). However, while adults’ judgments were
above chance (#(23)=2.77, p = .011), children’s
were not (t(24) = 0.59, p = .559).

Test Phase Performance

We assessed memory performance during the
test phases of each GLS condition. Our main out-
come measure was the percentage of facts for
which the correct number was recalled. We com-
puted a logistic mixed-effects model with GLS con-
dition (prediction vs. example), age group (children
vs. young adults), and their interaction as fixed
effects. Figure 2a depicts the percentage of correctly
remembered facts, separately for the two conditions
and for the two age groups. In line with our
hypotheses, we found a significant interaction
between age and GLS condition ((1) = 4.02,
p = .045, OR = 1.496). Post-hoc tests revealed that
children benefitted significantly more from generat-
ing predictions (1) = 12.36, p <.001, OR = 1.75),
whereas the performance difference between GLS
conditions was not significant in adults
(/*(1) = 0.98, p = .322, OR = 1.15). Both main effects
were significant as well, that is, children performed
signiﬁcantly worse on the memory test than adults
(x°(1) = 29.15, p < .001, OR = 0.29) and performance
was overall better after generating a prediction than
after generating an example (1°(1) = 10.77, p = .001,
OR = 1.15).

In addition to percentage of correctly remem-
bered facts, we also explored the absolute difference
between the recalled and the correct number as out-
come measure, which provides a more fine-grained
(nondichotomous) measure of learning. The pattern
of results was highly similar (Figure 2b): The inter-
action of age and condition was significant in the
expected direction (x*(1) = 4.98, p = .026, R? = .002),
with children showing better memory performance
(i.e., smaller difference scores) in the prediction
(112 £ 0.38) than in the example condition
(1.67 & 0.75) compared to adults (prediction:
0.53 £ 0.22, example: 0.75 £ 0.37). Here, post-hoc
tests revealed that the difference between GLS con-
ditions, although smaller than in children, was also
significant in adults (x*(1) =837, p=.003,
R* = .006). The main effects of age (x3(1) = 34.04,
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p<.001, R*=.012) and GLS condition
(x*(1) = 22,99, p < .001, R* = .008) were significant,
too.

Exploratory Analyses
Pupillary Data

We first compared the pupillary response upon
seeing the correct result between the GLS

conditions to determine whether generating predic-
tions boosted surprise. To this end, we subjected
the differences in pupil diameter from baseline to a
logistic mixed-effects regression that included GLS
condition, age group, and their interaction as fixed
effects. As can be seen from the time series shown
in Figure 2c, the average pupillary surprise
response was greater in the prediction condition
than in the example condition (1) = 13.97,
p <.001, R* = .01), and children had overall larger
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pupil dilations than adults (2(1) = 11.15, p =.001,
R? = .00). There was no interaction between condi-
tion and age group (2(1) = 1.65, p =.199, R? = .00),
suggesting that generating a prediction elicited a
surprise response in both age groups.

We next tested whether the pupillary response
was differentially predictive of learning in the two
age groups and conditions (cf. Figure S1). To this
end, we calculated the average difference in pupil
size between remembered and forgotten facts (i.e.,
subsequent memory effects; SMEs), separately for
both GLS conditions. Data of three children and
two adults were discarded because of too few trials
(<4 per cell). We then performed a mixed-design
ANOVA with GLS condition as a within-subject
factor and age group as a between-subject factor.
The results indicated a trend for the Age x Condi-
tion interaction (F(1, 43) = 3.10, p = .086, n, = .07),
whereas there was no significant main effect of age
group (F(1, 43) =0.17, p = .683, mp =.00), and a
trend for larger SMEs in the prediction condition
than in the example condition (F(1, 43) =292,
p =.095, n, = .06). We performed post-hoc t-tests
(Bonferroni-corrected), which revealed larger SMEs
in the prediction condition than in the example con-
dition in children (#21)=2.59, p =.017), and no
condition effect in adults (#(22) = —0.01, p = .994).

Predictors of the GLS Effect

To explore potential predictors of the observed
performance difference between the two GLS condi-
tions in children, we calculated the difference in
memory performance between the prediction and
example condition for each child. We first tested
whether differences in pupillary SME between the
prediction and example condition were related to
the difference in memory performance. We
observed a positive correlation between the two
(r = .50, p = .008): Children with a larger pupillary
SME in the prediction condition relative to the
example condition also showed a bigger memory
boost in the prediction condition. This finding pro-
vides further evidence for the important role of sur-
prise in mediating the beneficial effect of generating
a prediction on learning in children.

We then explored why generating an example
was not as effective as generating a prediction in
children. We expected good analogical reasoning to
be particularly important for example-based learn-
ing, resulting in smaller performance differences for
children with better reasoning abilities. We thus
tested whether performance in the reasoning task
was linked to performance in the example condition

and to the performance difference (directional tests).
Scores on the SON-R as a measure of analogical
reasoning abilities were obtained by adding the
number of items answered correctly in each set
minus the number of errors. One child’s analogical
reasoning score lay more than 1.5 interquartile
ranges under the 25% quartile and was therefore
discarded (Tukey, 1977). There was a close correla-
tion between analogical reasoning and performance
in the example condition (r=.52, p =.005). As
expected, the follow-up test on the link between
analogical reasoning and the performance difference
between GLS conditions revealed that children with
better reasoning abilities performed more similarly
in the two GLS conditions (r = —.36, p = .044; see
Figure 3a). Together, these findings suggest that
good analogical reasoning abilities are an important
prerequisite for the benefits of generating examples
to occur, and thus partially explain the performance
difference found in children.

We further explored EFs as a potential modera-
tor due to their importance for learning complex
material (e.g., Zaitchik, Igbal, & Carey, 2014) and
because, similar to reasoning abilities, they also dis-
play strong improvements during late childhood
and adolescence (Diamond, 2013). In the HFT, the
incongruent block and the mixed block assess inhi-
bitory control and cognitive flexibility respectively.
We calculated the average RT across both blocks to
obtain a combined measure of EFs. We controlled
for processing speed by calculating relative RT dif-
ference scores ([x — y]/y) through subtracting the
mean RT of trials in the congruent block. To obtain
a score in which higher values reflect better perfor-
mance, we subtracted this value from 1. The corre-
lation of this score with the performance difference
was not significant (r = .03, p = .887).

To explore the distinctive effects of analogical rea-
soning and EFs on the condition effect in children,
we computed a logistic mixed-effects regression anal-
ysis on memory performance with condition on
Level 1, analogical reasoning and HFT score on Level
2 as well as the cross-level interactions of Condi-
tion x Analogical Reasoning and Condition x HFT.
The interaction of Condition x Analogical Reason-
ing was significant (A1) = 4.00, p = .045), with rea-
soning ability having a stronger impact on
performance in the example condition (see Fig-
ure 3b). The Condition x HF interaction was not sig-
nificant (4%(1) = 0.11, p = .743) and there were no
significant main effects except for the effect of condi-
tion (°(1) = 6.37, p = .012). These results reinforce
the hypothesis that analogical reasoning is a prereq-
uisite for good example-based learning.
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Figure 3. Children’s analogical reasoning ability predicts the dif-
ference in effectiveness between the learning strategies. (a) Chil-
dren’s performance difference between generative learning
strategy conditions was negatively correlated with their analogi-
cal reasoning abilities (r = —.36, p = .044). (b) Analogical reason-
ing predicted performance differences between the two
conditions, also when controlling for executive functions. Esti-
mated values indicate that reasoning had a stronger impact on
performance in the example condition. Children with higher rea-
soning abilities, thus, performed more similarly in the two condi-
tions than children with lower reasoning abilities.

Discussion

This study revealed an Age x Learning Strategy
Type interaction for the effectiveness of GLSs. As
hypothesized, children remembered more facts after
generating predictions than after generating exam-
ples, and this difference was significantly greater
than in adults. Furthermore, compared to
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generating examples, generating predictions was
associated with a larger pupillary surprise response
upon seeing the correct result. This pupillary
response was a better predictor of children’s learn-
ing in the prediction condition than in the example
condition, and this effect correlated with the behav-
ioral performance difference. Taken together, these
findings suggest that prediction-induced surprise
promoted children’s learning. Also in line with our
hypotheses, we found that children’s reasoning
abilities were positively related to their performance
in the example condition and negatively with the
performance difference between the prediction and
example condition. That is, the better (i.e., more
mature) their reasoning abilities, the more do chil-
dren resemble adults in that generating examples is
similarly effective than generating predictions. In
summary, the results support our hypothesis that
there are distinct cognitive prerequisites for generat-
ing predictions and generating examples, which
result in different degrees of effectiveness of these
strategies for different age groups.

Our findings provide a proof of concept for the
importance of cognitive prerequisites for under-
standing individual differences as well as age-re-
lated trends in the effectiveness of GLSs. Our study
bridges the gap between research comparing the
effectiveness of different GLSs within the same age
group (e.g., Brod et al., 2018; Ritchie & Volkl, 2010;
Yeo & Fazio, 2019) and research comparing the
effectiveness of the same GLS between different age
groups (e.g., Gurlitt & Renkl, 2008). The former
approach has identified specific mechanisms under-
lying different GLSs (e.g., Brod et al., 2018),
whereas the latter approach has revealed the need
for instructional adaptations to support younger
learners (Gurlitt & Renkl, 2008). Only the combina-
tion of the two approaches, however, allows to
investigate why different GLSs might be differen-
tially effective for learners of various ages and with
varying cognitive abilities.

Our findings regarding the mechanisms underly-
ing the effectiveness of generating predictions in
children correlate well with previous research in
adults. In a recent study, Brod et al. (2018) used
pupillometry data to demonstrate that predictions
trigger surprise for expectancy-violating events and
that, on a between-subject level, the strength of this
surprise effect relates to better learning. Our pupil-
lary results are consistent with these findings in
that pupil dilations upon seeing the correct results
were larger after generating predictions than after
generating examples. Our findings extend the ones
by Brod et al. (2018) by demonstrating a similar
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pupillary surprise response in children, which sup-
ports the notion that surprise is an age-invariant
mechanism (Schutzwohl & Reisenzein, 1999) that
can be triggered by generating predictions. More-
over, the link between children’s surprise response
and subsequent memory predicted children’s per-
formance difference. These results are in line with
research that suggests that surprise increases atten-
tion to task-relevant information (Fazio & Marsh,
2009; Stahl & Feigenson, 2019), thereby enhancing
learning. In a different experiment (Brod & Bre-
itwieser, 2019), we were able to show that generat-
ing a prediction further increases attention to one’s
knowledge gap, which leads to increased curiosity
for the correct answer. Taken together, the results
of our experiments suggest that the effectiveness of
generating predictions is at least partially mediated
by enhanced attention to the new information.
Generating predictions is arguably one of the
simplest possible GLSs. The results of the present
study attest to the notion that it is this simplicity
that makes generating predictions particularly effec-
tive in children, whose limited attentional and cog-
nitive control functions impede the effectiveness of
more complex strategies. To improve our under-
standing of this strategy’s underlying mechanisms,
future studies should address the link between pre-
diction errors, surprise, and learning more explicitly
as generating predictions does not necessarily
require prior knowledge activation. Its effectiveness
likely relies on where on the continuum from mere
guessing to effortful prior knowledge retrieval the
generated prediction lies, as prediction errors made
with greater confidence should increase the experi-
ence of surprise, which should in turn enhance
learning. A previous study by Brod, Breitwieser,
Hasselhorn, and Bunge (2019) suggests that chil-
dren are not always able to leverage the benefit of
surprise for learning, however. Metacognitive skills
might need to be in place to override a previous
held belief with the correct information (Brod et al.,
2019). In the current study, the accuracy of chil-
dren’s retrospective judgments of task performance
was not significantly above chance, in contrast with
the adults’. This finding fits our knowledge of the
protracted development of procedural metamemory
(i.e., monitoring and regulation of memory perfor-
mance; Fritz, Howie, & Kleitman, 2010; Schneider,
2008). Future studies should look into the mediat-
ing role of procedural metamemory for the effect of
surprise on learning more closely by measuring
metacognitive judgments during task performance.
We also found evidence that generating exam-
ples can be an effective learning strategy. Adults

utilized examples almost as effectively as predic-
tions. The effectiveness of generating examples in
children was linked to their analogical reasoning
abilities: Children with better reasoning abilities
showed a smaller performance decrease in the
example condition (i.e., an adult-like performance
pattern). Our results, thus, suggest that analogical
reasoning abilities are an important and distinct
prerequisite for the benefits of example generation
to occur. The late development of analogical reason-
ing abilities (e.g., Richland et al., 2006) can then
explain why, on average, children did not meet the
cognitive requirements to utilize examples as effec-
tively as adults. Although it has been argued before
that analogical reasoning might underlie the suc-
cessful use of examples (Zamary & Rawson, 2018),
to our knowledge, this is the first study that explic-
itly tested the moderating effect of analogical rea-
soning abilities for the effectiveness of example-
based learning. While the correlational results
clearly do not allow to infer a causal relation
between analogical reasoning and example-based
learning, they are a good starting point for future
research to test their causal relation via intervention
studies.

Unlike previous research, the present study
tested example generation not as a means of learn-
ing declarative concepts (e.g., Rawson & Dunlosky,
2016; Zamary & Rawson, 2018), but as a means of
learning isolated facts. Thus, in our study, the pri-
mary purpose of the examples was not to make
sense of an abstract concept but to associate the
new information with a self-generated retrieval cue,
which has been shown to aid recall (Greenwald &
Banaji, 1989). It proved similarly effective to gener-
ating predictions in the university students. Never-
theless, one might argue that the task design was
not ideal for the benefits of example generation to
occur. Specifically, unlike the predictions, the exam-
ples did not directly relate to the to-be-learned
information (i.e., the numbers). While example gen-
eration still required elaboration of task-relevant
information, the appropriateness of the examples
was not determined by the correct number. It
remains an open question to what extent this has
dampened the effectiveness of generating examples.

Since the present study did not include a control
condition without any learning strategy prompt, we
cannot make inferences about how much perfor-
mance was boosted by generating predictions or
generating examples compared to “baseline” perfor-
mance. Such a baseline condition would be difficult
to implement because university students can be
expected to use effective learning strategies without



being prompted to—in accordance with their
knowledge of strategy effectiveness (Justice & Wea-
ver-McDougall, 1989). Elementary school children,
in contrast, are unlikely to spontaneously use effec-
tive learning strategies, and large interindividual
differences are to be expected due to the ongoing
development of metamemory abilities (Bjorklund,
2010; Bjorklund & Coyle, 1995). We, thus, deemed
baseline performance to be difficult to compare
between age groups and decided to not include a
baseline condition in our within-subjects design.
Having said that, however, an interesting question
for future research could be to elucidate which
strategies children and adults spontaneously use to
learn facts, whether there are interactions between
spontaneous and instructed strategy use (i.e.,
switching of strategies during the experiment), and
how this impacts learning success.

Another limitation of the current study is the
sample size, which was determined a priori to be
sufficient for testing the hypothesized Age x GLS
interaction effect as well as pupillary within-subject
condition differences. These preregistered parts of
the study were based on a pilot study with 26 chil-
dren and 18 adults and can, thus, be considered a
successful replication. The sample size is too small,
however, to ensure reliable estimates of the
between-subject correlational analyses. We see these
exploratory analyses as a first step toward explor-
ing the specific mechanisms and cognitive require-
ments of different GLSs to explain age-related
performance differences. Conceptual replications
are required to test the generalizability of the
results to other populations, strategies, and task
types. Including additional measures of cognitive
abilities would further allow to test the specificity
of the effects found in the present study. Finally,
the time span between the study and test phases
was rather short. We are therefore unable to draw
conclusions about the long term effects of generat-
ing predictions and generating examples.

In closing, the present study demonstrates the
importance of considering learners’ cognitive pre-
requisites for selecting the most effective GLS. Lev-
eraging an age-group comparison and knowledge
of typical developmental trajectories of specific cog-
nitive abilities, this study suggests that different
GLS can differ strongly in effectiveness depending
on maturity of these abilities. Thus, to achieve the
goal of selecting optimal learning strategies for a
particular group of learners or even for individual
learners, knowledge of their cognitive abilities as
well as knowledge of the cognitive prerequisites of
a specific GLS are needed. While this goal seems
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distant still, it is becoming clear that, rather than
proclaiming the most effective learning strategy for
all learners, the effectiveness of any learning strat-
egy will critically depend on the fit between its cog-
nitive requirements and the cognitive prerequisites
of the learner.
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Figure S1. Pupillary Response to Seeing the Cor-
rect Result, Separately for Later Remembered and
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