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The structure of academic self-concept (ASC) is assumed to be multidimen-
sional and hierarchical. This methodological review considers the most central 
models depicting the structure of ASC: a higher-order factor model, the Marsh/
Shavelson model, the nested Marsh/Shavelson model, a bifactor representation 
based on exploratory structural equation modeling, and a first-order factor 
model. We elaborate on how these models represent the theoretical assump-
tions on the structure of ASC and outline their inherent psychometric proper-
ties. We analyzed these models using a data set of German 10th-grade students 
(N = 1,232) including a wide range of domain-specific ASCs as well as general 
ASC. The correlations among ASCs and between ASCs and academic achieve-
ment varied depending on the structural model used. We conclude with discuss-
ing recommendations for research purposes and advantages and limitations of 
each ASC model. Our approach may also guide research on other affective or 
motivational constructs (e.g., academic anxiety or interest).
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Academic self-concept (ASC) is defined as the mental representation of one’s 
own academic abilities in general and in different academic domains (e.g., 
Brunner et al., 2010). Researchers have also used the terms self-concept of ability 
(Helmke & van Aken, 1995) and perceived cognitive competence (Harter, 1982) 
with similar definitions. ASC has been an important construct in education 
research for several decades, as it relates to desirable outcomes such as higher 
educational aspirations, better attainment, and more favorable learning behavior 
(Marsh, 2007; Marsh & Craven, 2006).

For the purpose of this article, it is useful to separate two lines of research 
(Brunner et al., 2010; Edwards & Bagozzi, 2000; Marsh & Craven, 2006; 
Shavelson et al., 1976): The first line of research—also known as “within-net-
work analyses” (Byrne, 1984, 1996)—addresses the internal structure of ASC. 
The second line of research—also known as “between-network analyses” (Byrne, 
1984, 1996)—addresses the nomological network of ASC by investigating rela-
tions between ASC and outcomes such as academic achievement. These two lines 
of research are intertwined, given that studying between-network relations 
requires an appropriate structural model of ASC. In other words, before examin-
ing the theoretical and practical significance of ASC by relating it to other vari-
ables, it is essential to clarify the underlying conceptual characteristics of ASC. 
Consequently, the question of how to best capture the structure of ASC has stimu-
lated much theoretical deliberation and empirical research.

Prior reviews on the structure of ASC (Byrne, 1984; Marsh & Hattie, 1996; 
Shavelson et al., 1976) are outdated and limited in scope because they did not 
cover the many currently available and applied ASC models. In addition, the pur-
pose of previous work on different models on the structure of ASC (Brunner et al., 
2010; Marsh, 1990b; Morin et al., 2016) was to introduce new models of ASC that 
addressed the challenges of previous models, rather than providing a comprehen-
sive review and systematic comparison of existing models. The goal of this meth-
odological review is therefore to provide an in-depth discussion of five central 
ASC models that have been most often applied or have recently been developed 
in contemporary ASC research: the higher-order factor model, the Marsh/
Shavelson model, the nested Marsh/Shavelson model, a bifactor representation 
based on exploratory structural equation modeling (ESEM), and the first-order 
factor model.

This article consists of two parts. In Part 1, we elaborate on the five models on 
the structure of ASC within the framework of within-network analyses to describe 
the internal structure and components of ASC as assumed by these models. We 
also elaborate on the five models on the ASC structure within the framework of 
between-network analyses to discuss how these models test relations to outcome 
variables (e.g., academic achievement). In doing so, we highlight important simi-
larities and differences concerning theoretical, conceptual, methodological, and 
psychometric characteristics of the ASC models. In Part 2, we illustrate the appli-
cation of the five ASC models for a large data set of secondary school students 
from Germany. We investigate the different ASC models and examine how the 
correlations between academic achievement and ASC vary depending on the 
structural model of ASC applied. The syntax codes for all statistical analyses are 
provided in the supplements (in the online version of the journal) to facilitate the 
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application of these models in future research. We conclude by discussing the 
empirical findings from a theoretical and methodological perspective. In addition, 
we give recommendations concerning which research questions can be best 
addressed with the different ASC models and outline the major shortcomings of 
each model. Given that other vital constructs in education research (e.g., aca-
demic anxiety, academic interest) share theoretical and psychometric underpin-
nings with ASC (e.g., domain specificity; Gogol et al., 2017), the present article 
may also be relevant for researchers focusing on such constructs.

Part 1: Within-Network and Between-Network Analyses on the Structure of 
ASC

The seminal review by Shavelson et al. (1976) marked the beginning of empir-
ical and psychometric ASC research as it made several empirically testable 
assumptions about the structure of self-concept (SC). Shavelson et al. (p. 411) 
defined SC as “a person’s perception of himself [sic]” and assumed SC to be both 
multidimensional and hierarchical in nature. Multidimensionality means that SC 
consists of different domain-specific facets tapping several domains of an indi-
vidual’s life and experiences. Hierarchy means that the domain-specific SC facets 
are located on different generality levels. General SC is assumed to be located on 
the highest and most general level of the hierarchy and separated into ASC and 
non-ASC on a subordinate level.

According to Shavelson et al. (1976), ASC itself has a multidimensional and 
hierarchical structure. That is, students form separate SCs related to different 
school subjects or academic domains and these domain-specific ASCs can be 
combined into a general ASC (Marsh, 1990b).1 Most of the ASC research has 
been conducted with students at school; thus, the academic connotation of ASC 
commonly refers to the school context (Marsh & Craven, 2006).

The model proposed by Shavelson et al. (1976) invoked a surge in research to 
empirically validate the assumptions of the multidimensional and hierarchical 
structure of ASC (i.e., within-network analyses; Byrne, 1996). The development 
and empirical evaluation of ASC models has benefitted from the evolution of 
structural equation modeling (SEM [e.g., Bollen, 1989; Kline, 2005]) that differ-
entiates between manifest or observed variables (items) and latent, unobserved 
constructs (factors). The manifest variables operate as indicators for the latent 
constructs. Methodological advancements such as confirmatory factor analyses 
(CFAs) and their refinements have also contributed to the development of various 
ASC models (MacCallum & Austin, 2000). In the following, we describe the five 
central ASC models that are considered in detail in this article: the higher-order 
factor model, the Marsh/Shavelson model (Marsh, 1990b), the nested Marsh/
Shavelson model (Brunner et al., 2010), a bifactor model implemented in ESEM 
(Asparouhov & Muthén, 2009), and the first-order factor model.

Within-Network Analyses: Models on the Structure of ASC

Higher-order Factor Model
The assumptions by Shavelson et al. (1976) implicated a higher-order factor 

model of ASC (Figure 1a). In this model, all domain-specific ASCs (e.g., verbal, 
math) formed first-order factors that load on a single higher-order factor 
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representing general ASC (i.e., students’ ASC across all domains). It is important 
to differentiate between two conceptualizations of general ASC. First, general 
ASC can be directly measured by items that assess how students perceive their 
abilities related to school in general and that are not tied to a specific domain or 
school subject (e.g., “I have always been good at school”). These items are then 
used to directly form general ASC either by deriving a latent first-order factor or 
by building a manifest scale score. Alternatively, general ASC can be extracted 
and aggregated from subordinate (first-order) factors of domain-specific ASCs. In 
this case, general ASC constitutes a higher-order factor that depicts the apex of a 
hierarchy of domain-specific ASCs. Such a higher-order factor of general ASC 
can either include or exclude a first-order general ASC factor (Yeung et al., 2000).2 
In the following, we refer to “GASC” for a first-order factor of general ASC that 
is directly measured by items capturing students’ perceptions of their school-
related abilities in general. We use the term “HGASC” to refer to a higher-order 
factor of general ASC composed of different first-order (domain-specific and 
GASC) factors.

The higher-order factor model clearly depicts the theoretical assumptions of 
Shavelson et al. (1976), but it often shows an inferior fit to the data compared to 
the alternative ASC models described below (Brunner et al., 2010), or even a poor 
fit (Marsh, 1987, 1990b). This is because the first-order math and verbal ASCs are 
consistently found to be nearly uncorrelated (Marsh, 1990a; Möller et al., 2009, 
2020). It is reasonable to assume a higher-order factor only when the subordinate 
domain-specific factors are substantially correlated. In this case, the higher-order 
factor can effectively explain the common variance of the domain-specific factors 
(Brunner et al., 2012).

Marsh/Shavelson Model
The Marsh/Shavelson model was developed in response to the observation of 

nearly uncorrelated math and verbal ASCs and thus to remedy the shortcomings 
of the higher-order factor model (Marsh, 1990b). The model (Figure 1b) replaces 
the HGASC with two higher-order factors that are assumed to be nearly 
uncorrelated—a higher-order math ASC and a higher-order verbal ASC. The 
domain-specific ASCs form first-order factors that are located on a continuum 
from a verbal endpoint to a math endpoint. The position of a certain ASC on this 
continuum is reflected by the loadings on the higher-order math ASC and the 
higher-order verbal ASC. Hence, domain-specific ASCs can be classified as being 
either “math-like” or “verbal-like.” The ASC related to students’ main language 
of instruction (e.g., German for students in the German educational system; 
English for students in the English educational system) is assumed to represent 
the verbal endpoint of the ASC continuum in its purest form, and it should there-
fore have the highest loadings on the higher-order verbal ASC. Other verbal- 
like ASCs, such as the ASCs related to students’ first foreign language or second 
foreign language, are located near the verbal endpoint of the ASC continuum. 
They are assumed to also load on the higher-order verbal ASC, but less strongly 
than the ASC related to students’ main language of instruction. At the other end of 
the continuum, math ASC is assumed to represent the math endpoint in its purest 
form, and therefore should have the highest loadings on the higher-order math 
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ASC. Math-like ASCs such as science-related ASCs (e.g., ASCs in physics and 
chemistry) are assumed to be located close to the math endpoint of the ASC con-
tinuum, and therefore to load on the higher-order math ASC as well, but to a lesser 
degree than math ASC.

In some cases, domain-specific ASCs cannot be straightforwardly classified 
into either being math-like or being verbal-like. For example, history ASC and 
biology ASC are each assumed to have both math-like and verbal-like aspects and 
are thus located in the center of the continuum. Therefore, history and biology 
ASCs are assumed to load on both higher-order factors (Marsh et al., 2017). 
Finally, GASC is specified as a first-order factor that loads on both higher-order 
ASC factors, in line with its conceptualization as students’ ASC related to all 
school subjects.

Nested Marsh/Shavelson Model
The nested Marsh/Shavelson model (Brunner et al., 2010; Figure 1c) capital-

izes on advanced CFA models (Eid et al., 2003, 2017) and was developed to 
simultaneously account for the hierarchy and multidimensionality of ASCs. It 
reverts to the assumption of a hierarchically superordinate ASC that was aban-
doned in the Marsh/Shavelson model. In the nested Marsh/Shavelson model, all 
indicators (i.e., items) of domain-specific ASCs form an HGASC represented by 
a general (G-) factor. In addition, the indicators of domain-specific ASCs form 
first-order factors representing domain-specific ASCs (S-factors) that are nested 
under the G-factor. Items measuring GASC do not build a separate first-order 
S-factor but load on the G-factor only. The G-factor is specified to be uncorrelated 
with all domain-specific ASC factors (i.e., the S-factors). The different S-factors 
for the domain-specific ASC factors are allowed to correlate.

The nested Marsh/Shavelson model was empirically validated with samples of 
German students from elementary school (Schmidt et al., 2017) and secondary 
school (Brunner et al., 2008), with secondary school students from Luxembourg 
(Brunner et al., 2010; Gogol et al., 2017), and with secondary school students 
from 26 different countries (Brunner et al., 2009).

Bifactor-ESEM Representation
All models presented so far rely on CFA, which typically builds on the inde-

pendent cluster model (ICM; McDonald, 1985), according to which each manifest 
item loads only on one single target factor without allowing any cross-loadings on 
other factors. However, the ICM approach might be too restrictive for multidi-
mensional constructs such as ASC. Multidimensional constructs consist of differ-
ent facets with some conceptual overlap, making cross-loadings theoretically 
plausible (e.g., Howard et al., 2018; Litalien et al., 2017; Marsh et al., 2009, 
2011).

ESEM (Asparouhov & Muthén, 2009; Morin et al., 2013) has been recently 
established as a methodological framework within SEM that allows cross-load-
ings. When applying target rotation in ESEM, it is possible to a priori specify 
whether an item should have a main loading or a cross-loading on a specific fac-
tor. ESEM also allows the implementation of bifactor models where each mani-
fest variable loads on a G-factor as well as on one or more S-factors (Morin et al., 
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2016; Reise, 2012; Reise et al., 2011). Bifactor models are usually orthogonal 
models, meaning all S-factors are specified to be mutually uncorrelated and the 
correlations between the S-factors and the G-factor are also set to zero. Bifactor-
ESEM representations have been successfully applied to model the joint structure 
of SC including academic and nonacademic facets (Arens & Morin, 2017; Morin 
et al., 2016). Still, bifactor-ESEM representations have not yet been applied to 
ASC only, although a bifactor-ESEM representation of ASC can well account for 
the hierarchy and multidimensionality of ASC as proposed by Shavelson et al. 
(1976). In a bifactor-ESEM representation of ASC, each ASC item has target 
loadings on a G-factor representing general ASC and on its corresponding 
S-factor. In addition, each ASC item has nontarget cross-loadings on the other 
S-factors (Figure 1d). The nested Marsh/Shavelson model can be conceptualized 
as an incomplete bifactor model because it does not include an S-factor for GASC 
items (Eid et al., 2017). The bifactor-ESEM representation, on the other hand, is 
a complete bifactor model because it comprises S-factors for all items including 
GASC items.

The First-Order Factor Model
A first-order factor model also builds on the ICM/CFA approach and assumes 

separate ASC factors for different domains or school subjects as well as for GASC 
(Figure 1e). The different ASC factors are allowed to correlate. However, the dif-
ferent ASC factors (including domain-specific ASCs as well as GASC) are not 
hierarchically related, instead all being located on the same level of hierarchy. 
Hence, the first-order factor model reflects the multidimensionality, but not the 
hierarchy, of ASC.

Between-Network Analyses: Outcome Relations of ASC

The importance of ASC in education research originates from its relations with 
outcome variables that are examined in the context of between-network analyses 
(Byrne, 1996). Academic achievement is probably the most frequently examined 
outcome variable of ASC (Hansford & Hattie, 1982; Marsh & Craven, 2006; 
Valentine et al., 2004). Academic achievement can be measured through stan-
dardized achievement test scores and school grades. Many empirical studies 
have found ASC to be more highly related to school grades than to standardized 
achievement test scores (Arens et al., 2017; Marsh et al., 2005; Möller et al., 
2009, 2020). School grades are highly salient as they are directly and regularly 
communicated to the students (Marsh et al., 2014). Furthermore, students can 
easily compare their own school grades in one subject with other students’ school 
grades in the same subject (social comparisons), with their own school grades in 
other subjects (dimensional comparisons), and with their own school grades in 
the same subject at previous points in time (temporal comparisons). These com-
parison processes have been conceptualized as an important mechanism of ASC 
formation (Möller et al., 2009, 2020; Wolff et al., 2019). The findings from 
between-network analyses have supported the domain specificity of ASC. 
Stronger relations have been found between ASC facets and achievement in 
matching domains (e.g., math ASC and math achievement) than between ASC 
facets and achievement in nonmatching domains (Marsh & Craven, 2006; Marsh 
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et al., 2017). Domain-specific ASCs are better able to explain and predict domain-
specific achievement than indicators of general ASC such as GASC (Swann et al., 
2007; Valentine et al., 2004).

Comparing Key Structural Characteristics Across ASC Models

In the following section, we discuss and compare the previously introduced 
models of ASC with respect to their assumptions about the nature and structure of 
ASC (within-network analyses) and with respect to the question of how achieve-
ment relations can be tested (between-network analyses). Table 1 summarizes the 
main aspects.

Multidimensionality
All five models of ASC reviewed here capture the assumption of multidimen-

sionality as proposed by Shavelson et al. (1976)—that is, all models differentiate 
between separate ASC facets representing different domains.

Hierarchy
The assumption of hierarchy as proposed by Shavelson et al. (1976) is included 

in all of the reviewed models except for the first-order factor model—they all 
include some form of superordinate constructs. However, the models differ in 
how they construe the hierarchical nature of ASC. The higher-order factor model 
includes an HGASC that is located at the apex of the ASC hierarchy and combines 
the common variance of the first-order ASC factors. The nested Marsh/Shavelson 
model and the bifactor-ESEM representation include a G-factor that combines the 
common variance of all manifest ASC indicators (items). The Marsh/Shavelson 
model includes two higher-order factors (i.e., a higher-order math ASC and a 
higher-order verbal ASC). As the higher-order factors in the Marsh/Shavelson 
model are domain-specific, only the higher-order factor model, the nested Marsh/
Shavelson model, and the bifactor-ESEM representation meet the original 
assumption regarding one hierarchically superordinate domain-unspecific, gen-
eral ASC construct.

Interpretation of Domain-Specific ASCs
All the models considered here reflect a multidimensional nature of ASC and 

thus include domain-specific ASCs. However, the domain-specific ASCs bear dif-
ferent meanings in the ASC models. In the higher-order factor model, the domain-
specific ASC factors capture the residual variance not explained by the HGASC. 
In the nested Marsh/Shavelson model, the domain-specific ASC factors capture 
the residual variance not explained by the G-factor. Hence, in these two models, 
the domain-specific ASCs are interpreted against the background of controlling 
for a hierarchically superordinate ASC construct (i.e., HGASC or the G-factor). In 
the Marsh/Shavelson model, the domain-specific ASCs capture the residual vari-
ance not explained by the higher-order math and/or the higher-order verbal ASCs. 
In the bifactor-ESEM representation, the domain-specific ASCs are controlled 
for when estimating a hierarchically superordinate construct of general ASC (by 
stating a G-factor) and the other domain-specific ASCs and GASC (by allowing 
item cross-loadings and stating an S-factor for GASC). Therefore, in all of these 
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models, individual students’ ratings on domain-specific ASCs provide informa-
tion about students’ profiles (strengths and weaknesses), while keeping constant 
the level of one (in the higher-order factor model, nested Marsh/Shavelson model, 
and bifactor-ESEM representation) or two (in the Marsh/Shavelson model) hier-
archically superordinate ASC constructs. In the first-order factor model, no hier-
archically superordinate construct of ASC is included and cross-loadings are not 
allowed. Hence, the interpretation of domain-specific ASCs is more complex: 
Here, the variance of domain-specific ASCs reflects a mixture of the variances of 
domain-specific ASCs as well as superordinate ASC constructs.

Inspired by the Marsh/Shavelson model (Marsh, 1990b) and the related idea of 
a math-verbal continuum of domain-specific ASCs (Marsh et al., 1988, 2015), 
researchers have examined the conceptual closeness of domain-specific ASCs. The 
models of ASC outlined here differ as to whether and how they depict conceptual 
closeness among domain-specific ASCs. The Marsh/Shavelson model reflects the 
conceptual closeness of domain-specific ASCs by the pattern of factor loadings of 
domain-specific ASCs on the higher-order math and higher-order verbal ASC fac-
tors. In the nested Marsh/Shavelson and the first-order factor model, the pattern of 
correlations among the domain-specific ASCs allows for examining the concep-
tual closeness of domain-specific ASCs. Importantly, in the nested Marsh/
Shavelson model but not in the first-order factor model, these correlations are 
controlled for the variance attributable to the G-factor. In the nested Marsh/
Shavelson model, the correlations among domain-specific ASCs can therefore be 
clearly attributed to the common variance among domain-specific ASCs. By con-
trast, in the first-order factor model, the correlations among domain-specific 
ASCs may partly reflect the common variance attributable to a superordinate ASC 
in addition to the common variance attributable to domain-specific ASCs. In the 
bifactor-ESEM representation, the pattern of cross-loadings of items on ASC fac-
tors other than the target ASC factors reflects the conceptual overlap between 
ASC domains. The higher-order factor model cannot provide information on the 
conceptual closeness among domain-specific ASCs, because all domain-specific 
ASCs load on the HGASC only.

Interpretation of GASC
The different ASC models conceptualize the directly assessed GASC in differ-

ent ways. In the higher-order factor model, GASC is a first-order factor that cap-
tures the common variance of all items assessing GASC and that is assumed to 
load on the higher-order factor of HGASC. In the bifactor-ESEM representation, 
GASC items load on a separate S-factor and on the G-factor (and may addition-
ally have cross-loadings on the other S-factors). In the Marsh/Shavelson model, 
GASC is a first-order factor that loads on both the higher-order math and verbal 
ASC factors. GASC is thus residualized for both higher-order factors. In other 
words, in the higher-order factor model, the bifactor-ESEM representation, and 
the Marsh/Shavelson model, GASC items explain residual variance of domain-
unspecific ASC ratings that is not captured by hierarchically superior constructs 
(i.e., HGASC, the G-factor, or higher-order math and verbal ASCs) and other 
domain-specific ASCs (in the bifactor-ESEM representation). By contrast, the 
nested Marsh/Shavelson model does not include an S-factor for the GASC items, 
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which are only used to define a superordinate general ASC (the G-factor). 
Likewise, in the first-order factor model, GASC is a separate first-order factor 
with correlations to the other domain-specific ASCs.

Invariance of the Meaning of Hierarchically Superordinate ASC Constructs
The different conceptualizations of GASC outlined above affect the interpreta-

tion of hierarchically superordinate constructs. In the higher-order factor model, 
the bifactor-ESEM representation, and the Marsh/Shavelson model, the meaning 
of the hierarchically superior constructs is linked to the ASC domains included in 
the model because the corresponding higher-order factors are defined by the com-
mon variance across domain-specific ASCs and GASC. In contrast, in the nested 
Marsh/Shavelson model, as there is no S-factor for GASC, the G-factor primarily 
depicts the common variance among GASC items and therefore retains its mean-
ing irrespective of the other ASC domains included in the model (Eid et al., 2017).

Correlations Between ASC and Achievement
In the nested Marsh/Shavelson model, one can probe for the correlations between 

the G-factor and outcome variables and between domain-specific ASCs (S-factors) 
and outcome variables. The correlations obtained between domain-specific ASCs 
(S-factors) and outcome variables can be interpreted as semipartial correlations that 
are controlled for the G-factor. This model does not permit testing the correlations 
between GASC and outcome variables because there is no S-factor for GASC. The 
bifactor-ESEM representation enables testing the correlations between outcome 
variables and the G-factor, the S-factors for domain-specific ASCs, and the S-factor 
for GASC. The resulting correlations for the S-factors are controlled not only for the 
G-factor as a hierarchically superordinate construct but also for shared variance with 
other ASCs given possible item cross-loadings across the S-factors for domain-spe-
cific ASCs and GASC (Asphahourov & Muthen, 2009; Morin et al., 2016). The 
first-order factor model allows researchers to examine the correlations between all 
domain-specific ASCs as well as GASC and outcome variables. When interpreting 
the correlations, one should keep in mind that the variances of the ASC factors rep-
resent a combination of the variance that is specific to the ASC considered and shared 
with other ASCs included in the model. Consequently, estimates of correlations with 
outcome variables obtained from the first-order factor model reflect correlations that 
are specific to a certain ASC but also due to shared variance across ASCs.

In the higher-order factor model and the Marsh/Shavelson model, one typically 
considers only the relations of the higher-order factors to outcome variables. 
When studying correlations between first-order ASCs and outcome variables, the 
higher-order factor model and the Marsh/Shavelson model suffer from an inherent 
psychometric restriction, that is, the proportionality constraint (Brunner et al., 
2012; Gignac, 2016; see also Chen et al., 2006; Schmiedek & Li, 2004). This 
constraint affects the proportion of variance in the item scores explained by 
higher-order and first-order ASC constructs. Specifically, the ratio of variance 
attributable to the first-order ASCs to variance attributable to the HGASC (in the 
higher-order factor model) or to the higher-order math and verbal ASCs (in the 
Marsh/Shavelson model) is constrained to be the same across a given set of ASC 
items. The estimated relations of first-order and higher-order ASCs (HGASC or 
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higher-order math and verbal ASCs) and outcome variables are thus linearly 
dependent (Schmiedek & Li, 2004). In other words, the proportionality constraint 
limits the value of these higher-order factor models in providing insights into the 
relation between first-order factors (domain-specific ASCs or GASC) and out-
come variables. If the relations between first-order factors and outcome variables 
are of interest beyond the relations between higher-order factors and outcome 
variables, one has to rely on highly restrictive model assumptions. Specifically, 
the size of one model parameter such as a correlation between a first-order factor 
and the outcome variable has to be fixed to a predetermined value (usually zero) 
in order to achieve model identification. This model constraint may distort the 
results when the predetermined value for the ASC-outcome relation does not 
reflect the true empirical relation (Brunner et al., 2012; Christensen et al., 2001).

Part 2: Empirical Illustration

In Part 1, we provided an overview of five central models of the structure of 
ASC. These models have been developed and tested using data sets that differ 
regarding the domain-specific ASCs included and the student samples used (e.g., 
age and origin of the samples). To our knowledge, no study has yet used the same 
data set to empirically test the models described above. Our overview of the dif-
ferent ASC models shows that an empirical evaluation of these models has to rely 
on a data set that includes a measure for GASC as well as measures for a broad 
variety of domain-specific ASCs. Therefore, we implemented the models using a 
large data set obtained from secondary school students in Germany with a mea-
sure for GASC as well as measures for seven domain-specific ASCs. We scruti-
nized and compared the properties of these models with within-network analyses, 
by considering the resulting structural characteristics, and then with between-
network analyses, by examining how the obtained correlations between ASCs and 
academic achievement—operationalized by school grades—vary depending on 
the structural model of ASC applied.

Method

Sample
On behalf of the 16 federal states in Germany, the Institute for Educational 

Quality Improvement (IQB) conducts regular, sample-based, large-scale assess-
ment studies to monitor the German educational system and compare student 
achievement across the federal states (e.g., Pant et al., 2013).3 We used data from 
a large field trial to pretest achievement test items to be used in these assessment 
studies. The field trial was conducted in 2014 with a total sample of 3,258 10th-
grade students. As is common in large-scale assessments, different test booklets 
and student questionnaires were randomly assigned to the students. The versions 
were randomized at the class level (i.e., all students from a class received the same 
questionnaire). Our analyses are based on the random subsample of N = 1,232 
students (N = 587 [47.6%] boys and N = 644 [52.3%] girls, N = 1 unreported] 
who received a questionnaire version with measures of ASC. Students’ age ranged 
from 14 to 19 years with a mean age of 15.43 years (SD = 0.65). The students 
came from 63 classes distributed across 48 schools. All common school types of 
the German secondary school system were included with a (slight) oversampling 
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(50.8%) of the academic track (Gymnasium). The majority of students (N = 
1.228; 87.9%) had German as their native language, N = 145 (11.8%) students 
did not have German as their native language, and respective information was 
missing for N = 4 (0.3%) students. Participation was mandatory at the school 
level but not at the student level. The participation rate at the student level was 
79.6%. Students were not rewarded or graded for participation. Parental consent 
was given for all students in the present sample.

Measures
Students’ ASCs in the domains of German (students’ main language of instruc-

tion), math, physics, English (a foreign language taught in all secondary schools 
in the German educational system, most commonly as students’ first foreign lan-
guage), chemistry, biology, and history were measured with four items each. The 
items were worded identically across the seven domains: “I learn quickly in 
[domain]”; “I have always been good at [domain]”; “Things in [domain] are easy 
for me”; “It is easy for me to understand new things in [domain].” The GASC 
scale consisted of three items that asked the students for their self-perceptions of 
school competence unrelated to a specific domain: “I learn things quickly in most 
school subjects”; “I have always been good at school”; “Things in most school 
subjects are easy for me.” Students responded to all items on a 5-point Likert-type 
scale ranging from does not apply at all to completely applies. Hence, high ratings 
consistently represented high levels of ASCs in all domains. The reliability esti-
mates in terms of Cronbach’s alpha were good for all scales (α = .83 to .95; 
Supplemental Table S1 in the online version of the journal).

Students’ school grades related to the same domains as assessed for the domain-
specific ASCs—that is, school grades in German, math, physics, English, chem-
istry, biology, and history (for descriptive statistics, see Supplemental Table S1 in 
the online version of the journal). The school grades were reported by the school 
officials based on the latest school report (end of the 9th-grade school report 
obtained in summer 2014). In Germany, school grades range from 1 to 6, with 1 
representing the best grade. For ease of interpretation, school grades were reverse 
coded for all analyses so that higher numbers represented better achievement.

Statistical Analyses
The analyses were all conducted within the SEM framework using Mplus 8.2 

(Muthén & Muthén, 1998–2019). For all models, we used the robust maximum 
likelihood estimator that may account for nonnormally distributed manifest 
variables (Hox et al., 2010). As the data had a hierarchical structure (students 
nested in classes), all models were implemented by using the Mplus option 
“type=complex,” using students’ classes as cluster variables. This option corrects 
for possibly biased standard errors, which can result when not considering the 
hierarchical structure of the data (Stapleton, 2006). In all models, we further 
included correlated uniquenesses between parallel-worded ASC items across 
domains to account for common variance (Marsh et al., 2013). To obtain model 
identification, the unstandardized loading of the first item on a factor was set to 1 
in the models relying on the CFA framework (i.e., the higher-order factor model, 
the Marsh/Shavelson model, the nested Marsh/Shavelson model, and the 
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first-order factor model). In the bifactor-ESEM representation, we used target 
rotation. Here, each item was assumed to have target loadings on the G-factor as 
well as on the S-factor representing the matching domain-specific ASC (or 
GASC). All items also had nontarget loadings on all remaining S-factors for 
domain-specific ASCs or GASC.

In a first step, we analyzed the structural models of ASC (within-network anal-
yses; Byrne, 1996); in a second step, we extended these models by including 
school grades to examine the correlations between ASC and achievement as an 
outcome variable (between-network analyses; Byrne, 1996). We used the school 
grades as single-item indicators to operationalize domain-specific achievement 
factors. The variance of the residual term of each achievement factor was fixed to 
zero. We inspected the zero-order correlations between the domain-specific 
school grades and ASC facets. The Mplus inputs for each ASC model are reported 
in the supplements in the online version of the journal.

Three students had missing values on all ASC variables and had thus to be 
excluded from the analyses that focused on the structure of ASC only; these stu-
dents could, however, be included in the analyses that focused on the relations 
between ASCs and school grades. On the item level, missingness for the ASC 
items was very low (range from 0.4% to 1.2%). For the school grades, the amount 
of missing data was higher and ranged from 2.3% to 20.9%. The major reason for 
missing values on the school grades was that single subjects were not taught or 
graded in a specific school, school type, or federal state in Grade 10, which can be 
considered as a missing at random (MAR) process. Still, the considered school 
subjects are part of the standard curriculum for secondary schools and thus all 
students were taught in these school subjects during their school career at some 
time. Missing values on all variables were handled by the full information maxi-
mum likelihood (FIML) approach implemented in Mplus. The FIML approach is 
known to be reliable and to lead to unbiased parameter estimates when handling 
data that are MAR or missing completely at random (Enders, 2010; Graham, 
2009). The assumption of MAR cannot be empirically tested (Schafer & Graham, 
2002), but serious violations of the assumption of MAR are relatively rare 
(Graham et al., 1997; Schafer & Graham, 2002). School grades from other sub-
jects and domain-specific ASCs were included in the analyses; school grades of 
different school subjects are highly correlated, and ASCs and school grades of 
matching domains are also highly correlated (Möller et al., 2009, 2020). Thus, 
even if the value of a certain school grade drove the missing data process (i.e., 
data are not missing at random), this process could be approximated by including 
school grades in other subjects or students’ ASCs in different subjects in the FIML 
estimation process. Simulation studies have shown that including such powerful 
covariates in the estimation process helps reduce bias in model parameters even 
when data are not missing at random (Collins et al., 2001). Taken together, miss-
ing data may not impose severe threats to the validity of our findings on the com-
parison of the structural models of ASC or on the pattern of relations between 
ASCs and achievement.

Two main criteria were applied for model fit evaluation. First, we referred to 
several commonly accepted descriptive goodness-of-fit indices (Marsh et al., 2004): 
the comparative fit index (CFI), the root mean square error of approximation 
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(RMSEA), and the standardized root mean square residual (SRMR). For the CFI, 
values between .90 and .95 are commonly accepted as indicators of good model fit, 
although some authors suggest a stricter criterion of .95 (e.g., Hu & Bentler, 1998). 
Concerning the RMSEA, values below .05 are indicative of a close fit, values 
between .05 and .08 are indicative of a reasonable fit, and values greater than .10 are 
indicative of a poor fit (Browne & Cudeck, 1993). For the SRMR, values below 
.05 indicate good model fit (Diamantopoulos & Siguaw, 2000), while cutoff val-
ues of .08 (Hu & Bentler, 1998) and even of .10 (Kline, 2005) are still accepted as 
adequate. Second, we inspected the resulting model parameter estimates and how 
well they aligned with theoretical assumptions of ASC (Bollen, 1989; Kline, 
2005; Marsh et al., 2004; West et al., 2012). Particularly, we evaluated the statisti-
cal significance and size of the standardized factor loadings (λ). Following Floyd 
and Widaman (1995), we considered standardized factor loadings of λ ≥ .30 to be 
substantial. For cross-loadings resulting from the bifactor-ESEM representation, 
we followed Mai et al. (2018), who proposed that cross-loadings of λ ≥ .10 are 
nonignorable. In addition, we evaluated factor correlations among the ASCs and 
the correlations between ASCs and academic achievement operationalized by 
school grades to judge the theoretical and empirical adequacy of the ASC 
models.

Results

For each ASC model, we first report the key results obtained for the structural 
model itself. Second, we report the findings regarding the correlations between 
ASCs and school grades.

Higher-Order Factor Model
Most goodness-of-fit indices obtained for the higher-order factor model with 

and without school grades were within an acceptable range, except for the SRMR 
that was greater than .10 (Table 2). All domain-specific first-order ASCs and 
GASC were well-defined as is evident from substantial and statistically significant 
positive factor loadings of the items on their matching first-order factors (Table 3). 
Among the first-order factors, GASC displayed the highest loading on the HGASC 
(λ = .79). The domain-specific first-order factors for English (λ = .19), German 
(λ = .21), and history ASCs (λ = .35) were relatively weakly related to the 
HGASC, whereas biology (λ = .54), math (λ = .64), chemistry (λ = .72), and 
physics (λ = .72) ASCs demonstrated substantial loadings on the HGASC.

The HGASC was positively related to academic achievement as measured by 
school grades (Table 4; see also Supplemental Table S2 in the online version of 
the journal). The correlations ranged from r = .20 for the English grade to r = .55 
for the chemistry grade. The pattern of correlations showed that the HGASC was 
more strongly related to grades obtained in math/science subjects (math: r = .47; 
physics: r = .50; chemistry: r = .55) than to school grades in verbal subjects 
(German: r = .26; English: r = .20).

Marsh/Shavelson Model
The Marsh/Shavelson model fitted the data well both with and without school 

grades (Table 2). The first-order, domain-specific ASC factors and GASC were 
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well-defined given the statistically significant and substantial positive loadings of 
the items on the corresponding factors (Table 3). Both higher-order factors were 
also well-defined: The higher-order math ASC was defined by math-like 
ASCs such as math ASC (λ =.73), chemistry ASC (λ =.74), and physics ASC 
(λ =.76); the higher-order verbal ASC was defined by verbal-like ASCs such 
as German ASC (λ =.78) and English ASC (λ =.49). The first-order GASC fac-
tor showed substantial positive loadings of similar size on both higher-order 
factors (higher-order math ASC: λ =.68; higher-order verbal ASC: λ = .64). 
History ASC and biology ASC also displayed substantial positive loadings on 
both higher-order factors. History ASC showed a higher loading on the higher-
order verbal ASC (λ = .44) than on the higher-order math ASC (λ = .23). 
Biology ASC showed a similarly high loading on the higher-order verbal ASC 
(λ = .34) and higher-order math ASC (λ = .45). The correlation between the 
higher-order math ASC and the higher-order verbal ASC factors was not statisti-
cally significant (r = −.05).

The higher-order math ASC was more strongly related to school grades in 
math/science subjects such as math (r = .50), physics (r = .49), and chemistry 
(r = .54) than to school grades in verbal subjects (German: r = .14; English: 
r = .08; Table 4; see also Supplemental Table S3 in the online version of the 
journal). The higher-order verbal ASC, in turn, was more strongly related to 
school grades in verbal subjects such as German (r = .47) and English (r = .47) 
than to grades obtained in math/science subjects (math: r = .05; physics: r = .12; 
chemistry: r = .05). Both higher-order ASC factors were positively related to the 
biology grade (r = .36 for the higher-order math ASC, and r = .21 for the 

TABlE 2

Goodness-of-fit indices

Model description χ² df CFI RMSEA SRMR

Models without school grades
 Higher-order factor model 1411.393 321 .960 .053 .104
 Marsh/Shavelson model 791.001 317 .982 .035 .044
 Nested Marsh/Shavelson model 552.248 280 .990 .028 .020
 Bifactor-ESEM representation 223.606 117 .996 .027 .005
 First-order factor model 618.927 301 .988 .029 .025
Models with school grades
 Higher-order factor model 3288.081 531 .916 .065 .107
 Marsh/Shavelson model 2198.234 520 .949 .051 .058
 Nested Marsh/Shavelson model 986.127 441 .983 .032 .024
 Bifactor-ESEM representation 594.596 271 .990 .031 .008
 First-order factor model 1062.012 462 .982 .032 .028

Note. All χ² were statistically significant (p < .05). All models were conducted with the robust 
maximum likelihood estimator. ESEM = exploratory structural equation modeling; CFI = 
comparative fit index; RMSEA = root mean square error of approximation; SRMR = standardized 
root mean square residual.
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TABlE 3

Standardized factor loadings (p values in parentheses) of the ASC models

Domain

Higher-order  
factor model

Marsh/Shavelson 
 model

Nested Marsh/ 
Shavelson model

First-order 
factor model

First-order  
loadings

Second-order  
loadings

First-order  
loadings

Second-order  
loadings on math ASC

Second-order load-
ings on verbal ASC

First-order  
loadings

Loadings on the  
G-factor

First-order 
loadings

Math ASC .636 (.000)/
.671 (.000)

.727 (.000)/
.746 (.000)

 

 Item 1 .891 (.000)/
.893 (.000)

.890 (.000)/

.892 (.000)
.776 (.000)/
.775 (.000)

.442 (.000)/

.448 (.000)
.891 (.000)/
.893 (.000)

 Item 2 .803 (.000)/
.806 (.000)

.804 (.000)/

.807 (.000)
.678 (.000)/
.680 (.000)

.439 (.000)/

.446 (.000)
.805 (.000)/
.810 (.000)

 Item 3 .921 (.000)/
.921 (.000)

.921(.000)/
.920 (.000)

.796 (.000)/

.798 (.000)
.463 (.000)/
.457 (.000)

.921 (.000)/

.920 (.000)

 Item 4 .919 (.000)/
.918 (.000)

.919 (.000)/

.917 (.000)
.767 (.000)/
.767 (.000)

.506 (.000)/

.499 (.000)
.918 (.000)/
.915 (.000)

German 
ASC

.207 (.020)/

.144 (.096)
.781 (.000)/
.752 (.000)

 

 Item 1 .843 (.000)/
.841 (.000)

.853 (.000)/

.852 (.000)
.748 (.000)/
.748 (.000)

.410 (.000)/

.410 (.000)
.853 (.000)/
.852 (.000)

 Item 2 .779 (.000)/
.779 (.000)

.792 (.000)/

.798 (.000)
.716 (.000)/
.719 (.000)

.338 (.000)/

.348 (.000)
.792 (.000)/
.798 (.000)

 Item 3 .861 (.000)/
.859 (.000)

.861 (.000)/

.857 (.000)
.768 (.000)/
.767 (.000)

.384 (.000)/

.376 (.000)
.860 (.000)/
.856 (.000

 Item 4 .849 (0.00)/
.848 (0.00)

.855 (.000)/

.855 (.000)
.759 (.000)/
.757 (.000)

.399 (.000)/

.403 (.000)
.857 (.000)/
.857 (.000)

English ASC .187 (.006)/
.133 (.053)

.492 (.000)/
.545 (.000)

 

 Item 1 .921 (.000)/
.921 (.000)

.922 (.000)/

.922 (.000)
.852 (.000)/
.852 (.000)

.354 (.000)/

.357 (.000)
.922 (.000)/
.923 (.000)

 Item 2 .854 (.000)/
.853 (.000)

.860 (.000)/

.861 (.000)
.804 (.000)/
.807 (.000)

.305 (.000)/

.307 (.000)
.860 (.000)/
.863 (.000)

 Item 3 .922 (.000)/
.921 (.000)

.921 (.000)/

.920 (.000)
.850 (.000)/
.849 (.000)

.353 (.000)/

.351 (.000)
.921 (.000)/
.919 (.000)

 Item 4 .910 (.000)/
.910 (.000)

.912 (.000)/

.913 (.000)
.833 (.000)/
.831 (.000)

.371 (.000)/

.374 (.000)
.912 (.000)/
.911 (.000)

Physics ASC .721 (.000)/
.725 (.000)

.764 (.000)/
.719 (.000)

 

 Item 1 .922 (.000)/
.922 (.000)

.922 (.000)/

.922 (.000)
.801 (.000)/
.801 (.000)

.455 (.000)/

.453 (.000)
.922 (.000)/
.921 (.000)

 Item 2 .873 (.000)/
.874 (.000)

.872 (.000)/

.873 (.000)
.731 (.000)/
.731 (.000)

.479 (.000)/

.486 (.000)
.871 (.000)/
.874 (000)

 Item 3 .913 (.000)/
.911 (.000)

.912 (.000)/

.911 (.000)
.821 (.000)/
.823 (.000)

.405 (.000)/

.400 (.000)
.913 (.000)/
.912 (.000)

 Item 4 .902 (.000)/
.901 (.000)

.901 (.000)/

.900 (.000)
.802 (.000)/
.803 (.000)

.418 (.000)/

.414 (.000)
.902 (.000)/
.901 (.000)

Biology 
ASC

.544 (.000)/

.519 (.000)
.449 (.000)/
.449 (.000)

.341 (.000)/
.305 (.000)

 

 Item 1 .878 (.000)/
.878 (.000)

.881 (.000)/

.881 (.000)
.776 (.000)/
.775 (.000)

.416 (.000)/

.418 (.000)
.881 (.000)/
.880 (.000)

 Item 2 .849 (.000)/
.850 (.000)

.851 (.000)/

.852 (.000)
.761 (.000)/
.760 (.000)

.389 (.000)/

.396 (.000)
.852 (.000)/
.855 (.000)

 Item 3 .874 (.000)/
.872 (.000)

.873 (.000)/

.871 (.000)
.775 (.000)/
.778 (.000)

.400 (.000)/

.392 (.000)
.873 (.000)/
.872 (.000)

 Item 4 .877 (.000)/
.876 (.000)

.878 (.000)/

.877 (.000)
.752 (.000)/
.752 (.000)

.457 (.000)/

.456 (.000)
.878 (.000)/
.878 (.000)

History ASC .354 (.000)/
.309 (.000)

.230 (.000)/
.209 (.000)

.435 (.000)/
.426 (.000)

 

 Item 1 .892 (.000)/
.891 (.000)

.894 (.000)/

.894 (.000)
.830 (.000)/
.831 (.000)

.333 (.000)/

.332 (.000)
.894 (.000)/
.895 (.000)

 Item 2 .858 (.000)/
.858 (.000)

.858 (.000)/

.859 (.000)
.799 (.000)/
.800 (.000)

.315 (.000)/

.319 (.000)
.859 (.000)/
.861 (.000)

 Item 3 .908 (.000)/
.907 (.000)

.909 (.000)/

.907 (.000)
.849 (.000)/
.852 (.000)

.327 (.000)/

.317 (.000)
.910 (.000)/
.909 (.000)

 Item 4 .888 (.000)/
.887 (.000)

.889 (.000)/

.889 (.000)
.816 (.000)/
.814 (.000)

.357 (.000)/

.357 (.000)
.890 (.000)/
.888 (.000)

(continued)
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Domain

Higher-order  
factor model

Marsh/Shavelson 
 model

Nested Marsh/ 
Shavelson model

First-order 
factor model

First-order  
loadings

Second-order  
loadings

First-order  
loadings

Second-order  
loadings on math ASC

Second-order load-
ings on verbal ASC

First-order  
loadings

Loadings on the  
G-factor

First-order 
loadings

Chemistry 
ASC

.717 (.000)/

.736 (.000)
.743 (.000)/
.728 (.000)

 

 Item 1 .920 (.000)/
.920 (.000)

.919 (.000)/

.919 (.000)
.793 (.000)/
.795 (.000)

.465 (.000)/

.459 (.000)
.920 (.000)/
.919 (.000)

 Item 2 .897 (.000)/
.898 (.000)

.896 (.000)/

.898 (.000)
.763 (.000)/
.764 (.000)

.472 (.000)/

.476 (.000)
.897 (.000)/
.899 (.000)

 Item 3 .925 (.000)/
.924 (.000)

.924 (.000/

.923 (.000)
.825 (.000)/
.827(.000)

.422 (.000)/

.415 (.000)
.924 (.000)/
.923 (.000)

 Item 4 .918 (.000)/
.918 (.000)

.918 (.000)/

.917 (.000)
.796 (.000)/
.799 (.000)

.458 (.000)/

.452 (.000)
.918 (.000)/
.918 (.000)

General ASC .786 (.000)/
.769 (.000)

.684 (.000)/
.719 (.000)

.638 (.000)/
.660 (.000)

 

 Item 1 .833 (.000)/
.825 (.000)

.853 (.000)/

.847 (.000)
.849 (.000)/
.839 (.000)

.848 (.000)/

.840 (.000)
.849 (.000)/
.839 (.000)

 Item 2 .699 (.000)/
.709 (.000)

.706 (.000)/

.726 (.000)
.706 (.000)/
.736 (.000)

.708 (.000)/

.735 (.000)
.706 (.000)/
.736 (.000)

 Item 3 .819 (.000/
.817 (.000)

.807 (.000)/

.803 (.000)
.804 (.000)/
.791 (.000)

.812 (.000)/

.802 (.000)
.804 (.000)/
.791 (.000)

Note. The parameter estimates before the slash were obtained from the models without school grades; the 
parameter estimates after the slash were obtained from the models including school grades. ASC = academic 
self-concept.

TABlE 3 (continued)

higher-order verbal ASC) and the history grade (r = .24 for the higher-order math 
ASC, and r =.35 for the higher-order verbal ASC).

Nested Marsh/Shavelson Model
The nested Marsh/Shavelson model provided a good fit to the data both with 

and without school grades (Table 2). The loadings of the domain-specific ASC 
items on their corresponding S-factors for domain-specific ASCs were all positive 
and of substantial size (range from λ = .68 for math ASC to λ = .85 for English 
ASC; Table 3). The G-factor was well-defined as is evident from the substantial 
positive loadings of the GASC items on the G-factor (λs = .71 to λ = .85). The 
items measuring domain-specific ASCs also showed positive loadings on the 
G-factor of a similar size across the different ASC domains (λs = .31 to λ = .51). 
The factor correlations (Table 5) showed a clear separation between math-like  
and verbal-like ASCs. For instance, the correlation between math and German 
ASCs was r = −.47, the correlation between math and English ASCs was r = 
−.31, and the correlation between German and physics ASCs was r = −.32. High 
positive correlations were observed between math-like ASCs such as math and 
physics ASCs (r = .40), math and chemistry ASCs (r = .31), or physics and 
chemistry ASCs (r = .47). The two language ASCs (i.e., German and English) 
were also positively correlated (r = .20).

Each domain-specific ASC demonstrated the highest correlations with the 
school grade of the matching domain (e.g., math ASC and math grade: r = .33; 
Table 4; see also Supplemental Table S4 in the online version of the journal). 
Moreover, correlations between math-like ASCs and school grades in math/
science subjects were positive and statistically significant (e.g., math ASC and 
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TABlE 6

Bifactor-ESEM representation: Standardized factor loadings (p values in parentheses)

Math ASC German ASC English ASC Physics ASC Biology ASC History ASC Chemistry ASC General ASC G-factor

Math ASC

 Item 1 .728 (.026)/
.730 (.000)

−.115 (.533)/
−.120 (.000)

−.074 (.312)/
−.075 (.000)

.081 (.942)/

.063 (.002)
−.053 (.881)/
−.057 (.003)

−.078 (.321)/
−.076 (.000)

.031 (.834)/

.034 (.219)
.061 (.712)/
.041 (.024)

.489 (.465)/

.496 (.000)

 Item 2 .598 (.237)/
.606 (.000)

−.116 (.627)/
−.121 (.000)

−.071 (.491)/
−.074 (.002)

.076 (.955)/

.064 (.058)
−.037 (.940)/
−.038 (.206)

−.063 (.033)/
−.056 (.030)

.031 (.921)/

.048 (.170)
.093 (.818)/
.136 (.000)

.497 (.541)/

.501 (.000)

 Item 3 .696 (.066)/
.681 (.000)

−.142 (.175)/
−.148 (.000)

−.089 (.194)/
−.095 (.000)

.043 (.954)/

.038 (.287)
−.067 (.812)/
−.075 (.001)

−.072 (.512)/
−.079 (.000)

.017 (.952)/

.003 (.927)
.010 (.980)/

−.023 (.411)
.573 (.116)/
.581 (.000)

 Item 4 .693 (.183)/
.663 (.000)

−.075 (.757)/
−.089 (.000)

−.068 (.497)/
−.076 (.000)

.109 (.937)/

.059 (.028)
−.053 (.915)/
−.081 (.000)

−.076 (.078)/
−.082 (.000)

.025 (.933)/

.001 (.974)
.023 (.957)/

−.045 (.037)
.576 (.486)/
.612 (.000)

German ASC

 Item 1 −.071 (.482)/
−.075 (.002)

.793 (.000)/

.791 (.000)
.115 (.000)/
.115 (.000)

−.077 (.842)/
−.089 (.000)

.043 (.797)/

.037 (.084)
.145 (.100)/
.141 (.000)

−.058 (.137)/
−.064 (.004)

.129 (.410)/

.089 (.002)
.181 (.172)/
.196 (.000)

 Item 2 −.118 (.237)/
−.113 (.000)

.749 (.000)/

.753 (.000)
.120 (.000)/
.122 (.000)

−.093 (.718)/
−.091 (.002)

.028 (.852)/

.028 (.307)
.083 (.103)/
.089 (.000)

−.079 (.168)/
−.065 (.054)

.118 (.541)/

.157 (.000)
.120 (.139)/
.127 (.021)

 Item 3 −.069 (.724)/
−.094 (.002)

.819 (.000)/

.803 (.000)
.161 (.000)/
.155 (.000)

−.024 (.978)/
−.072 (.028)

.108 (.736)/

.087 (.000)
.120 (.587)/
.119 (.000)

−.021 (.622)/
−.039 (.211)

.011 (.956)/
−.030 (.247)

.159 (.742)/

.200 (.001)

 Item 4 −.131 (.034)/
−.128 (.000)

.784 (.000)/

.784 (.000)
.154 (.000)/
.155 (.000)

−.052 (.857)/
−.053 (.023)

.084 (.523)/

.082 (.000)
.158 (.066)/
.160 (.000)

−.073 (.022)/
−.073 (.007)

.068 (.680)/

.055 (.051)
.187 (.009)/
.194 (.000)

English ASC

 Item 1 −.036 (.514)/
−.039 (.063)

.112 (.102)/

.109 (.000)
.897 (.000)/
.897 (.000)

.015 (.961)/

.004 (.799)
−.007 (.952)/
−.011 (.462)

.055 (.422)/

.055 (.003)
−.041 (.067)/
−.044 (.004)

.074 (.375)/

.053 (.000)
.154 (.199)/
.166 (.000)

 Item 2 −.086 (.453)/
−.092 (.001)

.116 (.147)/

.115 (.000)
.836 (.000)/
.837 (.000)

−.041 (.906)/
−.056 (.038)

.012 (.938)/

.005 (.838)
.016 (.663)/
.015 (.515)

−.032 (.694)/
−.035 (.184)

.126 (.377)/

.121 (.001)
.096 (.531)/
.113 (.019)

 Item 3 −.070 (.701)/
−.063 (.005)

.105 (.560)/

.110 (.000)
.891 (.000)/
.890 (.000)

−.070 (.927)/
−.030 (.227)

−.005 (.985)/
.007 (.728)

.035 (.822)/

.027 (.182)
−.042 (.563)/
−.041 (.041)

.004 (.947)/

.005 (.827)
.208 (.763)/
.192 (.000)

 Item 4 −.044 (.736)/
−.053 (.008)

.162 (.069)/

.156 (.000)
.878 (.000)/
.874 (.000)

−.009 (.982)/
−.034 (.074)

.027 (.877)/

.015 (.499)
.033 (.488)/
.033 (.109)

−.048 (.418)/
−.056 (.015)

.048 (.813)/

.031 (.203)
.170 (.307)/
.191 (.000)

Physics ASC

 Item 1 .035 (.736)/
.085 (.009)

−.105 (.005)/
−.093 (.000)

−.069 (.043)/
−.059 (.005)

.551 (.128)/

.616 (.000)
−.082 (.218)/
−.045 (.086)

−.025 (.749)/
−.002 (.940)

−.035 (.773)/
.029 (.439)

−.100 (.674)/
−.050 (.070)

.728 (.009)/

.667 (.000)

 Item 2 .014 (.721)/
.064 (.024)

−.084 (.168)/
−.071 (.000)

−.035 (.498)/
−.027 (.228)

.517 (.063)/

.599 (.000)
−.036 (.334)/

.006 (.775)
−.019 (.874)/

.003 (.910)
−.029 (.891)/

.036 (.286)
−.017 (.827)/

.088 (.052)
.693 (.001)/
.636 (.000)

 Item 3 .181 (.918)/
.065 (.142)

−.019 (.991)/
−.101 (.000)

−.011 (.979)/
−.035 (.070)

1.038 (.892)/
.677 (.000)

.125 (.960)/
−.011 (.740)

−.021 (.989)/
.021 (.300)

.147 (.664)/

.089 (.029)
.080 (.912)/

−.064 (.084)
.379 (.946)/
.597 (.000)

 Item 4 −.009 (.950)/
.023 (.405)

−.124 (.181)/
−.112 (.000)

−.040 (.542)/
−.037 (.060)

.563 (.000)/

.626 (.000)
−.042 (.760)/
−.013 (.551)

−.009 (.946)/
−.002 (0.913)

.033 (.912)/

.070 (.013)
−.099 (.289)/
−.075 (.010)

.681 (.000)/

.637 (.000)

Biology ASC

 Item 1 −.046 (.873)/
−.037 (.099)

.075 (.520)/

.074 (.000)
−.003 (.937)/

.000 (.996)
−.012 (.989)/
−.017 (.409)

.738 (.016)/

.739 (.000)
.059 (.602)/
.066 (.000)

.028 (.811)/

.043 (.038)
.022 (.919)/
.019 (.280)

.465 (.306)/

.461 (.000)

 Item 2 −.078 (.786)/
−.070 (.005)

.077 (.490)/

.076 (.000)
−.015 (.668)/
−.015 (.459)

−.017 (.984)/
−.014 (.579)

.722 (.017)/

.728 (.000)
.064 (.525)/
.074 (.001)

.015 (.906)/

.035 (.151)
.036 (.877)/
.088 (.000)

.436 (.328)/

.434 (.000)

 Item 3 −.027 (.963)/
−.071 (.004)

.050 (.890)/

.029 (.214)
.035 (.740)/
.023 (.242)

.061 (.975)/
−.027 (.387)

.763 (.258)/

.722 (.000)
.041 (.889)/
.038 (.115)

.041 (.860)/

.004 (.869)
.005 (.990)/

−.065 (.011)
.425 (.728)/
.490 (.000)

 Item 4 −.046 (.874)/
−.055 (.000)

.083 (.447)/

.075 (.000)
.014 (.713)/
.010 (.626)

.025 (.977)/

.004 (.821)
.716 (.015)/
.705 (.000)

.063 (.557)/

.062 (.001)
.023 (.844)/
.016 (.458)

.015 (.946)/
−.011 (.563)

.500 (.278)/

.514 (.000)

History ASC

 Item 1 −.003 (.994)/
−.037 (.248)

.138 (.672)/

.121 (.000)
.039 (.739)/
.032 (.172)

.089 (.950)/

.017 (.511)
.115 (.835)/
.083 (.000)

.842 (.000)/

.835 (.000)
.025 (.932)/

−.006 (.852)
.106 (.678)/
.042 (.117)

.246 (.756)/

.293 (.000)

 Item 2 −.041 (.943)/
−.070 (.071)

.123 (.725)/

.107 (.000)
.032 (.817)/
.025 (.310)

.089 (.953)/

.019 (.641)
.096 (.879)/
.067 (.019)

.792 (.000)/

.797 (.000)
.024 (.953)/
.007 (.885)

.094 (.825)/

.088 (.156)
.253 (.769)/
.297 (.000)

 Item 3 −.180 (.896)/
−.096 (.039)

.065 (.962)/

.120 (.000)
.025 (.945)/
.037 (.107)

−.336 (.955)/
−.048 (.420)

−.083 (.966)/
.023 (.534)

.862 (.494)/

.821 (.000)
−.136 (.698)/
−.097 (.042)

−.168 (.707)/
−.090 (.065)

.538 (.907)/

.367 (.000)

 Item 4 −.008 (.989)/
−.040 (.071)

.161 (.634)/

.143 (.000)
.054 (.667)/
.047 (.013)

.114 (.939)/

.029 (.224)
.080 (.898)/
.041 (.043)

.808 (.000)/

.802 (.000)
−.019 (.957)/
−.046 (.069)

.048 (.916)/
−.007 (.806)

.288 (.728)/

.341 (.000)

Chemistry ASC

 Item 1 .081 (.877)/
.056 (.008)

−.045 (.887)/
−.064 (.000)

−.029 (.794)/
−.036 (.033)

.156 (.926)/

.094 (.000)
.058 (.920/
.032 (.106)

−.045 (.735)/
−.049 (.010)

.677 (.012)/

.654 (.000)
.034 (.902)/

−.019 (.323)
.596 (.500)/
.628 (.000)

 Item 2 .053 (.932)/
.034 (.063)

−.026 (.941)/
−.040 (.036)

−.062 (.622)/
−.070 (.000)

.134 (.940)/

.078 (.000)
.069 (.914)/
.048 (.001)

−.033 (.737)/
−.029 (.072)

.657 (.074)/

.654 (.000)
.090 (.799)/
.110 (.009)

.589 (.543)/

.620 (.000)

 Item 3 −.082 (.934)/
.000 (.993)

−.161 (.886)/
−.109 (.000)

−.094 (.745)/
−.082 (.000)

−.248 (.957)/
.013 (.641)

−.089 (.954)/
.007 (.705)

−.012 (.991)/
−.044 (.009)

.583 (.006)/

.627 (.000)
−.174 (.541)/
−.105 (.000)

.834 (.823)/

.667 (.000)

 Item 4 .044 (.952)/
−.004 (.861)

−.059 (.876)/
−.086 (.000)

−.044 (.756)/
−.056 (.003)

.135 (.945)/

.036 (.145)
.072 (.924)/
.023 (.221)

−.053 (.531)/
−.061 (.001)

.648 (.142)/

.609 (.000)
.008 (.989)/

−.080 (.002)
.614 (.556)/
.674 (.000)

(continued)
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Math ASC German ASC English ASC Physics ASC Biology ASC History ASC Chemistry ASC General ASC G-factor

General ASC

 Item 1 .133 (.875)/
.064 (.083)

.224 (.520)/

.199 (.000)
.159 (.220)/
.143 (.000)

.045 (.983)/
−.058 (.093)

.083 (.922)/

.020 (.534)
.108 (.001)/
.076 (.003)

.009 (.988)/
−.067 (.052)

.473 (.548)/

.309 (.000)
.613 (.615)/
.702 (.000)

 Item 2 .063 (.929)/
.063 (.010)

.182 (.506)/

.178 (.000)
.173 (.087)/
.168 (.000)

.008 (.996)/
−.015 (.591)

.059 (.934)/

.051 (.037)
.001 (.953)/
.012 (.615)

−.049 (.929)/
−.034 (.248)

.509 (.454)/

.628 (.000)
.481 (.632)/
.515 (.000)

 Item 3 .071 (.690)/
.028 (.468)

.139 (.652)/

.137 (.000)
.136 (.015)/
.124 (.000)

−.155 (.849)/
−.162 (.000)

−.033 (.802)/
−.059 (.046)

.013 (.980)/
−.026 (.368)

.017 (.968)/
−.054 (.172)

.399 (.464)/

.249 (.000)
.704 (.421)/
.744 (.000)

Note. Target factor loadings are indicated in bold. The parameter estimates before the slash were obtained from 
the model without school grades; the parameter estimates after the slash were obtained from the model including 
school grades. ESEM = exploratory structural equation modeling; ASC = academic self-concept.

TABlE 6 (continued)

physics grade: r = .12; math ASC and chemistry grade: r = .15). Correlations 
between verbal-like ASCs and school grades in verbal subjects were positive and 
statistically significant (e.g., German ASC and English grade: r = .10) or not 
statistically significant (English ASC and German grade: r = −.03). Negative cor-
relations were observed between math-like ASCs and school grades in verbal sub-
jects (e.g., math ASC and German grade: r = −.12; physics ASC and English 
grade: r = −.17) as well as between verbal-like ASCs and school grades in math/
science subjects (e.g., German ASC and math grade: r = −.23; English ASC and 
physics grade: r = −.14). Finally, the G-factor demonstrated substantial positive 
relations to school grades in all subjects (rs = .40 to .48).

Bifactor-ESEM Representation
Despite the very good model fit obtained for the bifactor-ESEM representa-

tion (Table 2), an inspection of the factor loadings indicated several estimation 
problems. Out of 31 target loadings on the S-factors, 11 loadings did not reach 
statistical significance, although they were substantial in size (i.e., λ ≥ .30; 
Table 6). For the S-factor of physics ASC, there was one standardized factor 
loading above 1 that was not statistically significant. The target loadings of the 
domain-specific ASC items and GASC items on the G-factor were all nonsignifi-
cant. Nevertheless, the inclusion of item cross-loadings seemed to be warranted 
as 52 out of the 217 item cross-loadings were larger than λ > .10 and therefore 
nonignorable, although most of these cross-loadings were not statistically sig-
nificant. Finally, the G-factor did not seem to be adequately defined as a domain-
unspecific ASC construct: The loadings of GASC items on the G-factor ranged 
from λ = .48 to .70 in the model without school grades, but some domain-
specific ASC items showed even higher loadings on the G-factor (e.g., items for 
physics ASC and chemistry ASC had loadings of λ =.73 and λ = .83, 
respectively).

When adding the school grades as outcome variables to the bifactor-ESEM 
representation, the factor loadings of the ASC items on the target S-factors and on 
the G-factor did not change in sign and were of similar size; however, the standard 
errors of the factor loadings (indicating precision of estimation) became consider-
ably smaller. Therefore, all target loadings of the ASC items on their matching 
S-factors and on the G-factor became statistically significant, along with many 
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cross-loadings (Table 6). The problems regarding the definition of the G-factor 
also vanished, because none of the loadings of domain-specific ASC items on the 
G-factor exceeded the highest loading of a GASC item (λ = .74).

The S-factors for domain-specific ASCs demonstrated positive and statisti-
cally significant relations to the school grades of the matching domains (e.g., 
math ASC and math grade: r = .38; Table 4; see also Supplemental Table S5 in 
the online version of the journal). Across domains, most of the correlations 
between ASCs and school grades were not statistically significant; six out of 
42 correlations were statistically significant but small in size (rs = −.10 to 
.16). The S-factor for GASC was positively and substantially correlated to 
school grades in all subjects (rs = .32 to .43). Similarly, the G-factor was found 
to share positive and substantial correlations with all school grades (rs = .14  
to .41).

First-Order Factor Model
The first-order factor model provided a good fit to the data (Table 2). All ASC 

factors were well-defined as indicated by substantially positive factor loadings 
ranging from λ = .71 for GASC to λ = .92 for chemistry ASC (Table 3). GASC 
showed statistically significant positive correlations with all domain-specific 
ASCs; these correlations ranged from r = .38 (for history ASC) to r = .52 (for 
math ASC; Table 5). Among different domain-specific ASCs, the correlations 
ranged from a small, yet statistically significant negative correlation between 
math and German ASCs (r = −.12; i.e., between a math-like and a verbal-like 
ASC) to a moderate and statistically significant positive correlation between 
physics and chemistry ASCs (r = .60; i.e., between two math-like ASCs).

When considering the relations to achievement, the highest correlations 
resulted between ASCs and school grades related to the same domain (e.g., math 
ASC and math grade: r = .51; Table 4; see also Supplemental Table S6 in the 
online version of the journal). GASC displayed positive and statistically signifi-
cant correlations with all school grades (rs = .39 to .47).

Discussion

Part 1 of this article provided an in-depth review of vital theoretical and meth-
odological characteristics of five central structural models of ASC: the higher-
order factor model, the Marsh/Shavelson model, the nested Marsh/Shavelson 
model, a bifactor representation based on ESEM, and the first-order factor model. 
In Part 2, we illustrated the application of these models using data from a large 
field trial with secondary school students from Germany. In the following sec-
tions, we discuss our empirical findings from a theoretical and methodological 
perspective. We then conclude with recommendations suggesting which research 
questions can be addressed by the different ASC models and by outlining advan-
tages and shortcomings of each model.

Review of Empirical Findings

Multidimensionality
The assumption of multidimensionality was empirically supported in all mod-

els because all factors representing domain-specific ASCs were well-defined. In 
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particular, the domain-specific ASC items had substantial positive loadings on 
their respective ASC factors in all models. The domain specificity of ASC was 
further corroborated by the correlations between ASCs and school grades used as 
achievement indicators. The nested Marsh/Shavelson model, the bifactor-ESEM 
representation, and the first-order factor model allow for the examination of 
domain-specific outcome relations. In all these models, the strongest relations 
between ASC and school grades were observed in the same domain (i.e., school 
subject), whereas the correlations between ASCs and school grades of nonmatch-
ing domains were relatively lower. This indication of domain specificity was 
found irrespective of whether these relations involved first-order ASCs (in the 
first-order factor model) or residualized ASCs controlled for the G-factor (in the 
nested Marsh/Shavelson model and bifactor-ESEM representation).

Hierarchy
All models assuming a hierarchical ASC structure (i.e., the higher-order factor 

model, the Marsh/Shavelson model, the nested Marsh/Shavelson model, and the 
bifactor-ESEM representation) showed a satisfactory fit to the data. In addition, 
the constructs representing hierarchically superordinate ASC constructs (i.e., the 
HGASC in the higher-order factor model, the higher-order math and verbal ASCs 
in the Marsh/Shavelson model, and the G- factors in the nested Marsh/Shavelson 
model and the bifactor-ESEM representation) were well-defined by the respective 
subordinate domain-specific ASC factors.

In the higher-order factor model and in the bifactor-ESEM representation, the 
meaning of the HGASC and the G-factor, respectively, varies with the ASC 
domains included. This issue was clearly illustrated in our study that was based on 
a data set containing two verbal-like ASC measures (German, English), three  
math-like ASC measures (math, physics, chemistry), and two presumably mixed 
ASC measures (history, biology). This overrepresentation of math-like ASCs may 
explain the relatively higher factor loadings of the three math-like ASCs on the 
HGASC and relatively lower factor loadings of the two verbal-like ASCs on the 
HGASC in the higher-order factor model. A similar pattern of findings emerged 
in the bifactor-ESEM representation, in that the items for German and English 
ASCs showed low loadings on the G-factor despite defining strong S-factors. The 
items for math, physics, and chemistry ASCs, on the other hand, had substantial 
loadings both on their matching S-factors and on the G-factor. In contrast, in the 
nested Marsh/Shavelson model, the GASC items displayed the highest factor 
loadings on G-factor relative to the loadings of all domain-specific ASC items. 
This is a vital characteristic of the nested Marsh/Shavelson model: The G-factor 
retains its meaning irrespective of which and how many ASC domains are inte-
grated (Eid et al., 2017).

The Meaning of GASC
Measures of GASC have been increasingly disregarded by ASC research given 

the strong domain specificity of ASC. However, the consideration and inclusion 
of GASC measures can be advantageous. First, GASC items are a direct and eco-
nomical measure of students’ ASC across a variety of domains or school subjects. 
The findings from this study corroborate this conclusion: In the higher-order 



ASC Models

59

factor model, the GASC factor displayed the highest loading on the HGASC of all 
the first-order ASC factors. In the Marsh/Shavelson model, the GASC factor had 
similarly sized loadings on both the higher-order math and higher-order verbal 
ASCs. In the nested Marsh/Shavelson model, the GASC items showed higher 
loadings on the G-factor compared to the loadings of the domain-specific ASC 
items. In the bifactor-ESEM representation, the GASC items had substantial posi-
tive loadings on the G-factor. The first-order factor model treats GASC as another 
first-order factor that is positively correlated with the other domain-specific 
ASCs, and these correlations were of similar size for the various domain-specific 
ASCs.

The conclusion that GASC displays a cross-sectional representation of domain-
specific ASCs is further supported by the inspection of the correlations to achieve-
ment. In the first-order factor model, the relations between the first-order GASC 
factor and the different school grades were all statistically significant, positive, 
and similar in size. The same pattern of relations could be observed for the 
G-factor that is defined by the GASC items in the nested Marsh/Shavelson model. 
Finally, in the bifactor-ESEM representation, the S-factor for GASC showed sim-
ilarly sized relations to the different school grades. In sum, our findings consis-
tently supported the capacity of GASC measures to capture how students perceive 
their school-related abilities in general.

We also observed a substantial proportion of residual variance of GASC in the 
higher-order factor model, the Marsh/Shavelson model, and the bifactor-ESEM 
representation. This residual variance suggests that GASC items capture some 
specific variance that is not shared with the domain-specific ASC items. This vari-
ance might refer to ASCs in noncore school subjects (e.g., physical education or 
arts), or might be related to secondary or side competences such as self-regulated 
learning or social/cooperative skills. Hence, a second advantage of GASC mea-
sures is that they seem to contain more information than what is reflected by 
domain-specific ASCs alone. Still, the residual variance of GASC might not only 
represent these secondary academic competences but also reflect students’ dif-
ferential weighting of school subjects or domains when responding to GASC 
items. In other words, students might have different school subjects or domains in 
mind when asked for their self-perceptions related to “all school subjects.” The 
potential subjectivity of GASC items is a common characteristic of measures 
assessing general constructs not tied to specific domains. For example, Pavot and 
Diener (1993, p. 164) concluded that items assessing general life satisfaction 
(e.g., “In most ways my life is close to my ideal”) have the advantage that indi-
viduals can “weight domains of their lives in terms of their own values, in arriving 
at a global judgment of life satisfaction.” In a similar vein, GASC items have the 
advantage of allowing students to weight different school subjects according to 
what is important to them and to apply their own standards for success when 
being asked how they perceive their abilities related to “all school subjects.” 
Studies explicitly asking students about the domain(s) they think of when respond-
ing to GASC items might help to further illuminate the meaning and subjectivity 
of GASC measures.

A third advantage of GASC measures is related to the finding that ASC mea-
sures and outcome variables (e.g., achievement, learning behavior) are the most 
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strongly related when both are located on the same level of hierarchy and when 
they address the same content (Swann et al., 2007). When the task is to explain 
and predict domain-unspecific outcomes (e.g., general academic achievement, 
persistence at school), GASC measures might be more useful than domain-spe-
cific ASC measures.

Conceptual Closeness of Domain-Specific ASCs
Apart from the higher-order factor model, all models presented here offer the 

possibility to inspect the conceptual closeness of domain-specific ASCs. The rel-
evant models consistently demonstrated the separation between math and verbal 
ASCs as well as closer associations between different math-like ASCs and 
between different verbal-like ASCs, providing empirical support for a math-ver-
bal continuum of ASCs. In the Marsh/Shavelson model, the higher-order math 
and verbal ASCs were nearly uncorrelated. In the nested Marsh/Shavelson model 
and the first-order factor model, math and German ASCs even showed a negative 
correlation. In addition, the correlations between math-like ASCs and verbal-like 
ASCs were considerably lower than the correlations within math-like ASCs or 
within verbal-like ASCs. In the nested Marsh/Shavelson model and in the first-
order factor model, we found positive correlations between math, physics, and 
chemistry ASCs as math-like ASCs. Similarly, we found positive correlations 
between the verbal-like German and English ASCs. In the first-order factor 
model, the correlations between and among math-like and verbal-like ASCs par-
tially reflect the common variance among domain-specific ASCs that can be 
attributed to a hierarchically superordinate construct of general ASC. In the nested 
Marsh/Shavelson model, however, these correlations are controlled for the 
G-factor. This might also explain the stronger (negative) correlation between 
math and German ASCs in the nested Marsh/Shavelson model as compared to the 
first-order factor model. In the bifactor-ESEM representation, the items measur-
ing math ASC revealed negative cross-loadings on the German ASC factor, and 
vice versa. Furthermore, we found nonignorable negative cross-loadings between 
physics and German ASCs, and between chemistry and German ASCs, further 
illustrating the separation between math-like and verbal-like ASCs.4 Still, we 
found positive cross-loadings between math and physics ASCs and between 
German and English ASCs, illustrating the conceptual closeness among math-like 
and verbal-like ASCs, respectively.

History and biology ASCs were allocated in the center of the math-verbal con-
tinuum of ASC and thus were assumed to have both math-like and verbal-like 
characteristics. The findings of the present study lent support to the idea of con-
sidering biology ASC to be both math-like and verbal-like, as reflected by similar 
substantial loadings on the higher-order math and the higher-order verbal ASCs in 
the Marsh/Shavelson model. History ASC, however, seems to be more verbal-like 
than math-like, given its substantial loading on the higher-order verbal ASC but 
nonsubstantial loading on the higher-order math ASC. This conclusion was also 
supported by the findings from the bifactor-ESEM representation, which revealed 
positive cross-loadings between history and German ASCs. Moreover, in the 
nested Marsh/Shavelson model, we found a positive correlation between the 
S-factors for German ASC and history ASC but a negative correlation between 
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the S-factors for math ASC and history ASC. Finally, in the first-order factor 
model, the correlations between German or English ASCs and history ASC were 
higher than the correlation between math ASC and history ASC. Hence, findings 
from different structural models of ASC support the conclusion that history ASC 
is more verbal-like than math-like. This should be considered in future models on 
the structure of domain-specific ASCs; previous conceptualizations of history 
ASC as being both math-like and verbal-like should be revised.

Recommendations

“All models are approximations. Essentially, all models are wrong, but some 
are useful” (Box & Draper, 1987, p. 424). This common aphorism in statistics 
applies well to models of the ASC structure. All ASC models are associated with 
specific limitations that should be balanced against their advantages and useful-
ness when selecting the most appropriate model for a specific research question. 
We therefore conclude by offering researchers guidance in how to select an appro-
priate model contingent upon the specific research questions and study aims and 
by pointing out the main limitations associated with each ASC model.

Higher-Order Factor Model

Research questions. From a theoretical standpoint, the higher-order factor model 
is well suited to empirically testing the assumptions of Shavelson et al. (1976). 
From a methodological standpoint, the higher-order factor model is adequate to 
assess the variance shared across all ASC items included in a study as represented 
in the HGASC. In terms of application, the higher-order factor model might be 
useful in studies that aim to aggregate ASC scores across several domains in order 
to test the relation of this aggregated ASC score to outcome variables that are 
also measured on a general level, such as grade point average or general school 
satisfaction.

Limitations. First, in data sets that include a broad variety of domain-specific 
ASC measures like the one used in the present study, the higher-order factor 
model fits the data worse than alternative structural models of ASCs. That is, 
the higher-order factor model does not reflect the empirical relations among 
ASC measures as well as other models do. For instance, it does not incorporate 
the consistently observed differentiation between math and verbal ASCs. Sec-
ond, the higher-order factor model suffers from the proportionality constraint. 
Hence, it is not well suited to study the relations between first-order ASCs (i.e., 
domain-specific ASCs or GASC) and outcome variables, because the ratio of 
variance attributable to a first-order ASC and to the higher-order factor is con-
strained to be the same across the ASC items. Third, the meaning of HGASC 
depends on the ASC domains under investigation, limiting the comparability 
of results across studies using data sets with different domain-specific ASC 
measures. If the goal for HGASC is to represent general ASC as accurately as 
possible, a high number of domains as well as a balance of math-like and ver-
bal-like domains would be desirable. Finally, given its foundation on the ICM/
CFA approach, the higher-order factor model does not take item cross-loadings 
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into account, although they are plausible in multidimensional constructs such 
as ASC.

Marsh/Shavelson Model

Research questions. From a theoretical standpoint, the Marsh/Shavelson model 
is useful for examining the location of domain-specific ASCs along a math-
verbal continuum. From a methodological standpoint, the Marsh/Shavelson model 
is well suited to examining the common variance across math-like ASCs and 
across verbal-like ASCs, as reflected in the higher-order math and verbal ASCs. 
For instance, based on the Marsh/Shavelson model, researchers have examined 
which science domains are most math-like (Jansen et al., 2015). The model may 
also be useful for classifying students based on their preference for either the math 
or verbal domain, using their scores on the higher-order math versus higher-order 
verbal ASCs. When the need for parsimony only allows the inclusion of higher-
order math and higher-order verbal ASCs instead of a variety of domain-specific 
ASCs, the higher-order ASCs can be useful for predicting students’ educational 
choices. For example, one might predict that students’ major choice at college or 
university in the science, technology, engineering, and mathematics domain is 
associated with higher scores on the higher-order math ASC than on the higher-
order verbal ASC (Guo et al., 2015).

Limitations. First, as the Marsh/Shavelson model assumes two higher-order fac-
tors (i.e., a higher-order math ASC and a higher-order verbal ASC), it suffers 
from the proportionality constraint. This means that correlations among all first-
order and higher-order ASCs and outcome variables cannot be examined with this 
model. Second, the meanings of the (math and verbal) higher-order constructs 
depend on the ASC domains under investigation, which limits the comparability 
of results across studies that include varying domain-specific ASC measures. A 
high number and balanced selection of math-like and verbal-like domains will 
result in a higher substantive validity of higher-order math and verbal ASCs. 
Third, the Marsh/Shavelson model cannot account for differences between 
ASCs within the math or verbal domains, as all math-like or verbal-like ASCs 
are assumed to commonly load on the higher-order math ASC or higher-order 
verbal ASC, respectively. Finally, the Marsh/Shavelson model relies on the ICM/
CFA approach and therefore does not consider possible item cross-loadings across 
domain-specific ASCs.

Nested Marsh/Shavelson Model

Research questions. From a theoretical standpoint, the nested Marsh/Shavelson 
model is well suited to simultaneously testing the multidimensionality and hier-
archy of ASC following the theoretical assumptions by Shavelson et al. (1976). 
From a methodological standpoint, as an incomplete bifactor model, the nested 
Marsh/Shavelson model is an interesting refinement and advancement of pre-
vious CFA models. The meaning of the G-factor is invariant even in cases of 
varying numbers and scope of the domain-specific ASC measures. Hence, this 
model may be particularly useful in integrative data analyses (e.g., across several 
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data sets based on independent samples; Curran, 2009), in longitudinal research 
(e.g., when different domain-specific ASC measures are considered over time 
to reflect the changing school curricula in different grade levels), or in studies 
that include an unbalanced number of domain-specific math-like and verbal-like 
ASCs. The nested Marsh/Shavelson model can further be used to examine the 
relations between all domain-specific ASCs and the G-factor and outcome vari-
ables (e.g., achievement). Finally, the nested Marsh/Shavelson model is ideally 
suited to depicting students’ profiles of self-perceived strengths and weaknesses. 
In other words, students’ scores on the S-factors for domain-specific ASCs repre-
sent their individual profiles of self-perceived strengths and weaknesses related 
to different domains, which are controlled for the G-factor (Schmidt et al., 2017). 
Hence, the nested Marsh/Shavelson model can be used to better understand the 
importance of individual profiles for students’ developmental trajectories (e.g., 
course selection).

Limitations. First, the nested Marsh/Shavelson model does not include an S-fac-
tor for GASC, and thus cannot be used to study research questions that focus on 
GASC in terms of specific variance that is not shared across the domain-specific 
ASC measures included. Second, given its foundation on the ICM/CFA approach, 
the nested Marsh/Shavelson model does not take item cross-loadings into account, 
but these cross-loadings may explain at least some item variance over and above 
the target loadings on domain-specific ASCs and the G-factor.

Bifactor-ESEM Representation

Research questions. From a theoretical standpoint, the bifactor-ESEM represen-
tation simultaneously reflects the multidimensionality and hierarchy of ASC fol-
lowing the assumptions by Shavelson et al. (1976). With this model, researchers 
can test the relations between domain-specific ASCs, GASC, and the G-factor 
and outcome variables (e.g., achievement). From a methodological standpoint, it 
is a full bifactor model including an S-factor for GASC, which makes it possible 
to test whether GASC retains some specific variance over and above the G-factor 
and how this specific variance is related to outcome variables. Moreover, based 
on the ESEM approach, the bifactor-ESEM representation considers the inclusion 
of item cross-loadings, which are theoretically plausible in multidimensional con-
structs such as ASC. This model characteristic might be particularly useful for the 
purposes of scale development and evaluation. In fact, item cross-loadings reflect 
the extent to which ASC items measure conceptually close but distinct ASCs over 
and above the target ASCs. This empirical knowledge may help construct ASC 
scales that better measure a certain target construct.

Limitations. First, the bifactor-ESEM representation cannot probe for correla-
tions among domain-specific ASCs (including GASC), as the corresponding fac-
tors are specified to be orthogonal. Second, the meaning of the G-factor reflecting 
general ASC may change contingent upon the number and selection of domain-
specific ASCs considered. Hence, a high and balanced number of domain-specific 
math-like and verbal-like ASCs should be included in respective studies. Third, 
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in our study, some estimation problems concerning the size and statistical signi-
ficance of factor loadings occurred in models without school grades as outcome 
variables. Hence, considerably more knowledge (e.g., on sample size, number 
of factor loadings, ratio of number of indicators per factor) is needed to identify 
the conditions for obtaining reliable parameter estimates in the bifactor-ESEM 
representation.

First-Order Factor Model

Research questions. From a theoretical standpoint, the first-order factor model 
depicts the multidimensionality of ASC, and therefore reflects one core assump-
tion of the ASC structure as proposed by Shavelson et al. (1976). Moreover, this 
model enables researchers to examine the relations between domain-specific 
ASCs and GASC and outcome variables (e.g., achievement). Finally, the first-
order factor model can probe for the conceptual closeness of ASCs within and 
across domains. From a methodological standpoint, it is surely the simplest model 
of the ASC structure and can thus be used as a starting point for data evaluation. 
Practically, many studies are based on the first-order model, particularly when 
they include only domain-specific ASC measures (i.e., no measure of GASC) 
and when they are not interested in possible higher-order constructs of ASC or 
in the structure of ASC. The first-order factor model is frequently used to exam-
ine relations between ASC and outcome variables, such as studies on the cross-
sectional and longitudinal relations between ASC and achievement within one 
domain (e.g., Arens et al., 2017; Marsh et al., 2015) or across several domains 
(e.g., Möller et al., 2009, 2020; Weidinger et al., 2019).

Limitations. First, the first-order factor model does not consider the hierarchy of 
ASC; thus, it does not fully represent the theoretical assumptions of the nature of 
ASC (Shavelson et al., 1976). Consequently, the resulting domain-specific ASCs 
represent a blend of variance attributable to a hierarchically superordinate ASC 
construct and to domain-specific ASC facets. Second, given its foundation on the 
ICM/CFA approach, the first-order factor model does not take into account the 
theoretically plausible and empirically validated item cross-loadings of the multi-
dimensional ASC construct.

General Remarks

An ideal approach to each ASC study would surely be to comparatively test 
and evaluate the different ASC models using multiple criteria including those 
applied in the present study. Researchers could thus learn about the consistency of 
empirical findings across different ASC models and get insight into how the results 
vary contingent upon which ASC model is applied. Still, this might not be always 
possible because the different ASC models rely on different conditions of use. The 
higher-order factor model, the Marsh/Shavelson model, and the bifactor-ESEM 
model need a broad array of domain-specific ASC measures as well as a GASC 
measure. Here, a balanced number of domain-specific math-like and verbal-like 
ASCs is recommended to prevent verbally or mathematically biased hierarchi-
cally superordinate constructs. Given the invariance of the G-factor in the nested 
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Marsh/Shavelson model, a minimal specification of the nested Marsh/Shavelson 
model is the assessment of one domain-specific ASC in addition to GASC items. 
On the other hand, the first-order factor model can be used even when only one 
domain-specific ASC is assessed. This might be the case in cross-sectional and 
longitudinal large-scale studies such as the Programme for International Student 
Assessment (PISA) or the Trends in International Mathematics and Science Study 
(TIMSS), which cover many student variables beyond ASC.

Concerning sample size requirements, the first-order factor model seems to 
have the least restrictive requirements. The simulation study by Wolf et al. (2013) 
implied that a sample of N = 150 students is sufficient to obtain reliable model 
parameters in a CFA model with three factors that are defined by substantial item 
indicators greater than λ = .80. Furthermore, the required sample size does not 
substantially increase when more than three well-defined factors are included. 
Hence, the required sample size depends on the measurement quality of the factor 
indicators (i.e., factor loadings of the item indicators), suggesting that the use of 
well-validated ASC instruments is important. Also, the required sample size var-
ies contingent upon the number of indicators (e.g., items) per factor (Bollen, 
1989), making it difficult to establish general rules on sample size requirements. 
With respect to more complex models involving at least one hierarchical superor-
dinate ASC construct, it is even more challenging to postulate sample size require-
ments. Simulation studies would  thus be helpful for the purpose of study planning 
(Muthén & Muthén, 2002) and can build on the empirical findings of the present 
study. For example, the simulation study by Morgan et al. (2015) suggested that a 
sample of N = 200 is required for analyzing higher-order factor models (with one 
higher-order and four first-order factors with two to three indicators per first-order 
factor) and bifactor-CFA models (with one G-factor and four S-factors with two 
to three indicators per S-factor).

Conclusion

Starting with the seminal theoretical model by Shavelson et al. (1976), 
researchers have been interested in investigating the relations among domain-
specific ASCs, between domain-specific ASCs and GASC, and between ASC and 
outcome variables. In this context, researchers often face the question of which 
structural model of ASC should be used. We systematically compared and empiri-
cally illustrated those structural models that have been most often applied in past 
research or that have been recently established through methodological develop-
ments. To this end, we discussed in detail the inherent properties of the higher-
order factor model, the Marsh/Shavelson model, the nested Marsh/Shavelson 
model, the bifactor-ESEM representation, and the first-order factor model. 
Moreover, we outlined how these models represent key theoretical assumptions 
and empirical findings concerning the structure of ASC, how the included factors 
can be interpreted, and how they can address substantial questions of ASC 
research and theory. Each ASC model has its advantages and limitations when it 
comes to answering different research questions. Hence, careful consideration is 
needed when selecting a specific ASC model. Other core constructs in educa-
tion research (e.g., academic anxiety, academic interest) have theoretical under-
pinnings that are similar to ASC as they can also be conceptualized as 
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multidimensional and hierarchical in nature (Gogol et al., 2017). We therefore 
hope that our review provides helpful guidance not only to researchers choosing 
between structural models representing ASC but also to researchers focusing on 
other core constructs of education research and psychology.
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1The hierarchy and multidimensionality assumption of ASC goes even further, as 
domain-specific ASCs can be separated into more specific facets. For instance, verbal ASC 
can be differentiated into reading, listening, and writing self-concepts (Arens & Jansen, 
2016; Schmidt et al., 2017; Yeung et al., 2000). However, this review is limited to domain-
specific ASCs.

2In this article, we consider only a higher-order factor model that includes general ASC 
as a first-order factor. This provides a clearer comparison to the other ASC models consid-
ered here, which all include a first-order factor for general ASC.

3until 2012, these studies were referred to as “IQB National Assessment Studies.” They 
are now referred to as “IQB Trends in Student Achievement.”

4The differentiation between math-like and verbal-like ASCs has been theoretically 
explained by the internal/external frame of reference (I/E) model (Marsh, 1990a; Möller 
et al., 2009, 2020). In the supplements in the online version of the journal, we describe 
the assumptions of the I/E model in detail. In addition, we present the empirical find-
ings obtained when estimating the I/E model with our data using the five different ASC 
models.
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