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Approximated Poncelet configurations

Örs Nagy1, Szilárd András2

Babeş-Bolyai University, Cluj Napoca, Romania

Motto: A picture is worth a thousand words

Abstract. In this short note we present the approximate construction of closed Poncelet configu-
rations using the simulation of a mathematical pendulum. Although the idea goes back to the work of
Jacobi ([16]), only the use of modern computer technologies assures the success of the construction. We
present also some remarks on using such problems in project based university courses and we present a
Matlab program able to produce animated Poncelet configurations with given period. In the same spirit
we construct Steiner configurations and we give a few teaching oriented refinement on the Poncelet grid
theorem.
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Introduction

Consider two circles (or conics in the general case) Γ and γ. Starting from the point
A0 ∈ Γ draw a tangent to γ which intersects Γ for the second time in A1. Repeating this
construction we can define the sequence (An)n≥0, where Ak ∈ Γ, ∀k ≥ 0 and AkAk+1 is
tangent to γ for all k ≥ 0. This construction is called the Poncelet construction.

Let’s recall Poncelet’s famous closure theorem:

Theorem 1. ([18],[14],[10]) If the sequence (An)n≥0 from the Poncelet construction is
periodic with period k for some point A0 ∈ Γ, then it is periodic for all A0 ∈ Γ.

This theorem shows that the appearance of a closed Poncelet construction is deter-
mined by the two conics and their mutual position, so we can call (Γ, γ) a k-Poncelet
configuration if the Poncelet construction has period k for all A0 ∈ Γ. Results concern-
ing the characterization of these configurations were established by Cayley in 1853 (see
[5] or [10])) and recently by Dominique Hulin in 2007 (see [15]). Our intention was to
give a computer algorithm (or a numerical method) for the construction of a Poncelet
configurations with given period k in order to produce educational applets, animations.
We have to mention that such configurations, animations are not available in dynamic
geometric softwares or at web resources for k ≥ 5. We have found a Java applet which
generates animations for Poncelet’s porism (see [21]) in the special case when Γ is a circle,
γ is an ellipse and they have a common center of symmetry. For our purpose neither the
Cayley conditions nor the Hulin decomposition proved to be useful in order to obtain an
acceptable accuracy from the numerical approximations. Our approach relies on Jacobi’s
proof of the Poncelet theorem (see [16]) and uses the following property:

1Email address: ors nagy@yahoo.com
2Email address: andraszk@yahoo.com
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Figure 1: Closed Poncelet construction with period k = 5

Theorem 2. Denote by Γ = ∂C(O, l) the circle of radius l obtained as the orbit of a
mathematical pendulum with period T. Denote by Aj the position of the pendulum at the
moment j nT

k
with 0 ≤ j ≤ k. The lines A0A1, A1A2, . . . , Ak−1Ak are tangents to a circle

γ and the pair (Γ, γ) is a k-Poncelet configuration.

The above property shows that in order to produce Poncelet configurations we need to
simulate the motion of a mathematical pendulum, to calculate the period T, to determine
the coordinates of the points A0, A1, . . . , Ak−1 and to calculate the coordinates of the
center and the radius of the inner circle γ. Our Matlab program performs these steps and
can be founded (together with some png animations) at

http://www.math.ubbcluj.ro/∼andrasz/poncelet/Animations.html

Figure 2: Poncelet configurations with k = 13, n = 6 and k = 15, n = 4

If we replace the lines AiAi+1 in the Poncelet theorem with circles Ci for each i ∈
{0, 1, . . . k− 1} such that Ci and Ci+1 are tangent (in Ti) for 0 ≤ i ≤ k− 1 (where Ck is C0)
and all the circles Ci are tangent to Γ and γ we obtain the Steiner theorem. The Steiner
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theorem can be reduced to the Poncelet theorem if we observe that the loci of centers
of the circles which are tangents to Γ and γ is an ellipse and the tangency points of Ti
are on a fixed circle (see figure 3). An other proof of the Steiner theorem uses the fact
that there exists an inversion which transforms Γ and γ into concentric circles. This idea
can be used to generate Steiner configurations by constructing a corresponding Steiner
configuration (with fixed n and k) for concentric circles and applying an inversion.

Figure 3: Steiner configurations with k = 5, n = 1 and k = 5, n = 2

If we take a closed look to the first case of figure 3 we can observe that the circles
C0, C1, . . . , Ck−1 may have intersection points (that are different from the tangency points).
If Γ and γ are concentric circles than these intersection points are on some circles, hence
this property remains true for the general case (see figure 4).

Figure 4: Additional properties of the Steiner configurations

A similar property of the Poncelet configurations is the recently discovered Poncelet
grid (see [20]). On figure 5 we can observe that the set of all intersection points determined
by two of the sides A0A1, A1A2, . . . , Ak−1A0 can be partitioned such that each class of the
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partition contains exactly k points and the points belonging to a class of the partition are
moving on an ellipse when A0 moves along Γ.

Figure 5: The ellipses containing the Poncelet grid

Moreover we can observe the following property

Theorem 3. Consider a k-Poncelet configuration (Γ, γ). If the points of a Poncelet grid
are contained on the ellipses E1, E2, . . . , Em and the points on Ej are labeled sequentially
Xj,1, Xj,2, . . . , Xj,k then for each j ∈ {1, 2, . . . ,m} there exists an ellipse3 which is tangent
to the lines Xj1Xj,1+v, Xj2Xj,2+v, . . . XjkXj,k+v.

Remark 1. This property is illustrated on figure 6 and shows that from a Poncelet config-
uration we can obtain infinitely many nested Poncelet grids belonging to Poncelet config-
urations with the same period k. The above theorem is mainly contained in [20] (theorem
1.1) but we think that it is useful to specify (especially for teaching reasons) that there are
several Poncelet polygons with the same set of vertices. This is not clarified in [20] and
the figures therein do not contain all the polygons.

Remarks and teaching experience

We used the Poncelet closure theorem in our teaching activity at different levels. We
worked with highschool students in several summer camps on the understanding of the
elementary proofs. We have to mention that a completely elementary proof can be founded
in the book of Sharigin ([19]). We included this theorem into an undergraduate geometry

3in the general case instead of ellipses we have conics
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Figure 6: Additional properties of the Poncelet grid

course for university students in the first year, we used the Poncelet porism problem as an
individual project subject for computer science students, we used the connection between
the mathematical pendulum and the Poncelet theorem in a course on dynamical systems
for computer science students and the study of new properties related to the Poncelet
theorem (see [14], [3],[8], [20], [22]). The need of high quality visualization appeared at all
these levels while it is almost impossible to draw or to construct exact figures if the period
of construction k satisfies k ≥ 6. As Howard Crosby wrote ”A wisely chosen illustration
is almost essential to fasten the truth upon the ordinary mind, and no teacher can afford
to neglect this part of his preparation.” In order to fulfill the necessity of a ”wisely
chosen illustration” we used our own figures. But at highschool level the proofs and our
figures were not convincing enough (due to their complexity), the students understood the
theorem but they were unable to construct their own Poncelet configuration and this lead
to a serious frustration. Some very probable roots of such a frustration were formulated
by S. Papert: ”Better learning will not come from finding better ways for the teacher
to instruct, but from giving the learner better opportunities to construct.” and also by
Kurt Levin: ”If you want to truly understand something, try to change it.” Unfortunately
minor changes in the problem can lead to very hard problems, that they can’t handle. We
observed that at some of our students the initial frustration was transformed into a very
deep motivation for further studies. We also have to point out that the use of animated
Poncelet constructions helped a lot in the understanding of the Poncelet theorem and
in the connection between the pendulum’s motion and the Poncelet theorem. We had
also a teaching activity where the students rediscovered the existence of the Poncelet
grid and theorem 3 using the analogy between the Steiner and the Poncelet porism and
constructing the corresponding animations. We can conclude that if a picture is worth a
thousand words, then an animation (or simulation) is worth a thousand pictures.

On the other side these animations were not helpful in understanding the mathematical
background and the proofs. This probably is connected with the ancient Chinese proverb
”Tell me and I’ll forget; show me and I may remember; involve me and I’ll understand.”
We think that although the use of visualizations is indispensable we have to take care to
avoid the situation when things are showed to students and they don’t get involved.
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Working with computer science students was a completely different experience because
some of them get the problem as an individual project, so they had to develop a computer
program which constructs Poncelet configurations. This framework assured that they got
involved.

Proofs

For the sake of completeness we recall some well known facts about the mathematical
pendulum and Jacobi’s elliptical functions. For a few more details we recommend [1].
Consider a mathematical pendulum with length l and initial position characterized by
ϕ(0) and ϕ′(0) (see figure 7). The motion of this pendulum is governed by the equation

Figure 7: The mathematical pendulum

ϕ′′ +
g

l
sinϕ = 0.

Lemma 1. The period of the pendulum can be expressed as

T = 4

√
l

g
E
(π

2
, sin

ϕ0

2

)
,

where

E(ϕ, k) =

∫ ϕ

0

dt√
1− k2 sin2 t

is the elliptic integral of the first kind.

Definition 1. If k ∈ (0, 1) and

E(ϕ) =

∫ ϕ

0

dt√
1− k2 sin2 t

is the elliptic integral of the first kind, then with the inverse z → Am(z) of the function
ϕ→ E(ϕ) (Am(z) = ϕ⇔ z = E(ϕ)) we can define Jacobi’s elliptic functions:

sn(z) = sin(Am(z));
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cn(z) = cos(Am(z));

dn(z) =
√

1− k2 sin2 Am(z).

Lemma 2. The solution of the Cauchy problem ϕ′′(t) = −k2 sin(ϕ(t)) ϕ(t0) = ϕ0 and
ϕ′(t0) = ϕ′0 is the function

ϕ(t) = 2 Am(ν(t− t0) +K1), (1)

where

K1 =

ϕ0/2∫
0

du√
1− ρ2 sin2(u)

, ρ =
k

ν

ν =

√
1

4
(ϕ′0)

2 + k2 sin2
(ϕ0

2

)
.

Proof of theorem 2 and 3. Consider Γ = ∂C(O, l) the orbit of the pendulum and C(I, r)
the circle with center I and radius r. Let O be the origin and OI the Ox axis, so

−→
OI = λ~i

where |λ|+r < l. If Qk ∈ Γ, k ∈ {1, 2} are two distinct points, then there exist (α1, α2) ∈
R2 with α1−α2 /∈ 2πZ and

−−→
OQk = l(~i cosαk +~j sinαk). The equation of the line Q1Q2 is

L(x, y) := x cos

(
α1 + α2

2

)
+ y sin

(
α1 + α2

2

)
− l cos

(
α1 − α2

2

)
= 0. (2)

The distance from I(λ, 0) to the line Q1Q2 is |L(λ, 0)|, so Q1Q2 is tangent to the interior
circle if and only if L(λ, 0) = εr, where ε ∈ {−1, 1}. Hence the tangents to the interior
circle can be characterized by the equation

λ cos

(
α1 + α2

2

)
− l cos

(
α1 − α2

2

)
− εr = 0. (3)

Denote by T the period of the pendulum, by k the period of the desired construction
and by n the number of pendulum periods used for the construction. In addition for
each 0 ≤ j ≤ k denote by Aj the position of the pendulum at the moment tj = jτ
with τ = nπ

k
. In order to prove theorem 2 and 3 it is sufficient to prove that the lines

AjAj+v, 0 ≤ j ≤ k are tangents of a fixed circle C(I, r). Moreover we prove that if
Θp(t) is the solution of the pendulum’s equation (with initial conditions ϕ(t0) and ϕ′(t0))
at the moment t − pτ and Ap(t) the position of the pendulum, then for all t the lines
Ap(t)Ap+v(t) are tangents4 to a fixed circle Cv(I, r). Due to lemma 2 for ϕ0 = t0 = 0 we
have Θp(t) = ϕ(t− pτ) = 2 Am(ν(t− pτ)), where ν = 1

2
|ϕ̇0|.

According to (2) the equation of the line Ap(t)Ap+v(t) is:

x cos

(
Θp(t) + Θp+v(t)

2

)
+ y sin

(
Θp(t) + Θp+v(t)

2

)
−

−l cos

(
Θp(t)−Θp+v(t)

2

)
= 0

4This is a key element in designing the animations.
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With the notations s := ν(t−pτ) and δ = vτ we have ν(t−(p+v)τ) = s−νvτ = s−δ,
so

cos

(
Θp(t) + Θp+v(t)

2

)
= cos(Am(s) + Am(s− δ)) =

= cn(s) cn(s− δ)− sn(s) sn(s− δ) (4)

and

cos

(
Θp(t)−Θp+v(t)

2

)
= cn(s) cn(s− δ) + sn(s) sn(s− δ). (5)

Due to (4) and (5) for the expression

S := l
dn(δ)− 1

dn(δ) + 1
cos

(
Θp(t) + Θp+v(t)

2

)
− l cos

(
Θp(t)−Θp+v(t)

2

)
we obtain

S = − 2l

1 + dn(δ)
(cn(s) cn(s− δ) + sn(s) sn(s− δ) dn(δ)), (6)

which leads to

S = − 2l cn(δ)

1 + dn(δ)
. (7)

This implies that the lines Ap(t)Ap+v(t) are tangents to the circle C(I, r) for all t ∈ R
if

−→
OI = l

dn(δ)− 1

dn(δ) + 1
~i,

and

r =
2l| cn(δ)|
1 + dn(δ)

.

Remark 2. This proof is in fact Jacobi’s original proof (with somewhat modified nota-
tions) for v = 1. For 1 ≤ v ≤ [(k − 1)/2] we obtain different polygons with the same
vertices. If we denote by X1X2 . . . Xk the convex Poncelet polygon inscribed in Γ, then the
points of the associated Poncelet grid can be obtained by constructing all diagonals of the
polygon X1X2 . . . Xk. Moreover if Ev is a Poncelet ”gridline”, then the intersection points
Xj1Xj2, . . . Xjk generate an other Poncelet grid.

Remark 3. Using the same ideas as in the above proof we can show that the intersection
points AiAj ∩ Ai+vAj+v belong to an ellipse for fixed i, j and 1 ≤ v ≤ k, so this approach
represents an alternative proof for theorem 1.1. from [20].

Concluding remarks

• The use of visualizations and animations is strongly recommended in the teach-
ing of mathematics. Moreover it is helpful if the students can generate their own
animations using some mathematical software (Matlab, Mathematica). In order to
overcome this need the teacher training curricula must contain special courses on
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the use of modern technology. The Poncelet and the Steiner theorem represents a
very good teaching example in this direction because the configurations can not be
constructed without a computer for arbitrary k.

• The parallel use of modern technologies (computers) and traditional methods/accesories
is an imperative necessity of high quality inquiry based mathematical education.
This implies that the classical classroom settings, the organization of activities must
be completely restructured in order to fulfill this necessity and to improve perfor-
mance.

• It would be interesting to generate also Zig-Zag and Ponzag configurations using
the equivalences from [13] and [14].

• It would be helpful in many teaching situations to include the Poncelet and the
Steiner porism into dynamic geometric softwares like Geonext, Geogebra, Cabri.
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