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In this study we examine the interplay between curriculum-embedded formative
assessment—a well-known teaching practice—and general features of classroom
process quality (i.e., cognitive activation, supportive climate, classroom manage-
ment) and their combined effect on elementary school students’ understanding
of the scientific concepts of floating and sinking. We used data from a cluster-
randomized controlled trial and compared curriculum-embedded formative
assessment (17 classes) with a control group (11 classes). Curriculum-embedded
formative assessment and classroom process quality promoted students’
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learning. Moreover, classroom processquality and embedded formative assess-
ment interacted in promoting student learning. To ensure effective instruction
and consequently satisfactory learning outcomes, teachers need to combine spe-
cific teaching practices with high classroom process quality.
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From both a teaching effectiveness point of view (e.g., Brophy, 2000;Scheerens & Bosker, 1997; Wang, Haertel, & Walberg, 1993) and a teacher
education point of view (Ball & Forzani, 2011), effective teaching can be
described as practices predictive of student learning, which can be devel-
oped in teacher training or professional development programs
(Grossman, Loeb, Cohen, & Wyckoff, 2013). However, approaches currently
taken to describe effective teaching differ in scope and depth. While for
instance Ball and Forzani (2011) focus on specific ‘‘high-leverage practices’’
such as choosing and representing content, organizing small-group work, or
employing certain methods to assess students, Pianta, La Paro, and Hamre
(2008) provide a rating scheme according to broad, global dimensions,
namely classroom organization, emotional support, and instructional sup-
port. The Danielson Framework (1996), which greatly influenced the
Measures of Effective Teaching project (Kane, McCaffrey, Miller, & Staiger,
2013), is a mix of specific teaching practices and global factors. In a synthesis
of research on effective teaching, Good, Wiley, and Florez (2009) noted nine
general principles, again including specific teaching practices (i.e., scaffold-
ing students’ ideas and task involvement, practice/application, goal-oriented
assessments) and global factors of classroom process quality (i.e., thoughtful
discourse, proactive and supportive classrooms, classroom management).
The authors also included content-related principles (i.e., coherent content,
curriculum alignment, appropriate expectations). Particularly classroom pro-
cess quality and specific teaching practices have received much attention in
empirical research (Baumert et al., 2010; Grossman et al., 2013; Hattie, 2009;
Reyes, Brackett, Rivers, White, & Salovey, 2012).
Despite the large body of research in this area, the interplay between

global factors of effective teaching and specific teaching practices in enhanc-
ing students’ learning rarely has been investigated. In this article we disen-
tangle both categories within a quasi-experimental study of early science
education. Teachers obtained training on curriculum-embedded formative
assessment, a prominent example of a specific teaching practice, and imple-
mented it in their science classes. The general dimensions of classroom pro-
cess quality were rated by students. To control content matter, all the
teachers conducted a scripted unit on floating and sinking, which has
been shown to enhance students’ understanding of these science concepts
(Hardy, Jonen, Möller, & Stern, 2006; for American-based research on this
topic, see Shavelson et al., 2008; Shemwell & Furtak, 2010).
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Curriculum-Embedded Formative Assessment
as a Specific Teaching Practice

Since the seminal work of Black and Wiliam (1998), formative assessment
has become one of the most prominent teaching practices in education
research. It is defined as the repeated use of assessment-based information to
recognize and respond to students’ needs to enhance learning (see Bell &
Cowie, 2001, p. 536). A meta-analysis has shown that formative assessments
supports student learning (Kingston & Nash, 2011); however, the termforma-
tive assessmenthas been used inconsistently in the literature, and this approach
has been operationalized in diverse ways (Kingston & Nash, 2011). Classroom
formative assessment can be distinguished by its degree of formality ranging
from informal ‘‘on the fly’’ assessment during classroom instruction and dis-
course to ‘‘curriculum-embedded’’ assessment as formal and planned diagnostic
tests placed at specific joints in the curriculum where a central subgoal of learn-
ing should have been met (e.g., Shavelson et al., 2008; Wilson & Sloane, 2000).
Embedded formative assessments can be implemented in the curriculum

in several ways described in terms of structural and quality components
(e.g., Furtak et al., 2008). Structural components of embedded formative
assessments refer, for instance, to the time frame (between lessons, between
teaching units, or over semesters/years), frequency, and methods of formal
assessment and feedback (e.g., paper-pencil test, computer-based assess-
ments, and teacher- or peer-mediated feedback). Attempts are currently
being made to understand why and how formative assessment affects stu-
dents’ learning processes (e.g., Black & Wiliam, 2009; Rakoczy, Harks,
Klieme, Blum, & Hochweber, 2013). Black and Wiliam (2009) present several
key strategies that refer to the quality of implementing formative assessment
in a curriculum. These key strategies aim to make students’ current level of
understanding and their learning processes more explicit, to articulate
clearly learning goals to students, and to engage them in learning (see
also Furtak et al., 2008). In particular, addressing the key strategies of forma-
tive assessment when providing feedback has a great impact on student
learning (e.g., Hattie, 2009; Hattie & Timperley, 2007). To be effective, feed-
back on assessment should be given in a timely manner; it informs students
about their current conceptions and competencies, their learning progress,
and the learning goals, and assists and encourages students to take the
next learning step (Hattie & Timperley, 2007; Sadler, 1989). Such feedback
strategies have been successfully implemented in formative assessment
(e.g., Rakoczy et al., 2013).

Global Dimensions of Classroom Process Quality

Recent international research has identified key features or basic dimen-
sions of effective teaching, which focus on classroom process quality and
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build on the assumptions of cognitive-constructivist or socio-constructivist
models of teaching and learning (e.g., Bransford, Brown, & Cocking, 2000).
Several authors have identified independently but consistently three global
dimensions of classroom process quality in Europe (i.e., cognitive activation,
supportive climate, and classroom management; Klieme, Pauli, & Reusser,
2009; for a similar model, see Baumert et al., 2010) and in the United States
(i.e., instructional support, emotional support, and classroom organization
(Pianta et al., 2008; Reyes et al., 2012). These processes are described below.

Cognitive Activation or Instructional Support

Cognitive activation refers to instructional strategies to develop students’
conceptual understanding. Teachers explore and build on students’ prior
concepts and ideas, specify connections among facts and procedures, com-
pare ideas and concepts, and use challenging tasks and nonroutine prob-
lems to stimulate cognitive conflicts and engage students in higher-level
thinking processes (Baumert et al., 2010; Lipowsky et al., 2009). Through
participation in classroom discussion, students may communicate concepts
and ideas and develop conceptual understanding (e.g., Osborne, Erduran,
& Simon, 2004, in the context of science education). Empirical findings
have confirmed that cognitive activation fosters student learning (e.g.,
Baumert et al., 2010; Kunter et al., 2013; Lipowsky et al., 2009; Pianta &
Hamre, 2009). Many of these studies have been conducted in secondary
school mathematics classrooms. However, the concept of cognitive activa-
tion can be successfully applied to other subjects in elementary school
(see Fauth, Decristan, Rieser, Klieme, & Büttner, 2014; Hamre, Pianta,
Mashburn, & Downer, 2007; Reyes et al., 2012).

Supportive Climate or Emotional Support

Teacher-learner interactions have been conceptualized and theoretically
framed in markedly different ways (see Cornelius-White, 2007; Davis, 2003).
A supportive classroom climate requires positive teacher-student relation-
ships and constructive learner support. It is characterized by a warm class-
room atmosphere and caring teacher behavior, constructive teacher
feedback, and a positive approach to student errors and misconceptions
(e.g., Brophy, 2000; Klieme et al., 2009; Lipowsky et al., 2009). Studies on
the impact of a supportive climate confirm its positive effect on student
learning outcomes (e.g., Cornelius-White, 2007; Pianta, Nimetz, & Bennett,
1997; Reyes et al., 2012).

Classroom Management or Classroom Organization

Effective classroom management has been acknowledged for several
decades as a central feature of successful instruction (e.g., Emmer &
Stough, 2001; Hattie, 2009; Kounin, 1970). This dimension of classroom
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process quality is closely connected with the concept of time on task (Seidel
& Shavelson, 2007; Wang et al., 1993). Classroom management strategies
involve the implementation of clear rules and procedures in the classroom
and the use of smooth transitions between activities (Doyle, 1986).
Furthermore, effective classroom management requires strategies for coping
with disruptions and dealing with disciplinary problems (Emmer & Stough,
2001; Kounin, 1970). Effective classroom management has been shown to
support student learning at different school levels and in various domains
(e.g., Hattie, 2009; Seidel & Shavelson, 2007; Wang et al., 1993).

Interplay Between Classroom Process Quality
and Embedded Formative Assessment

To gain further insight into how teaching affects student learning,
Raudenbush (2008) suggested that researchers focus onenactedregimes
(i.e., regimes that students actually experience) rather than onintended
regimes (i.e., planned treatment or curricula). Regarding the enactment of
specific teaching practices, Furtak et al. (2008) highlighted the importance
of quality features (the quality of enactment) of embedded formative assess-
ment rather than structural components in supporting students’ science
understanding. However, determining the quality of enactment requires
appropriate measures as well as elaborate and time-consuming analyses of
classroom instruction (Raudenbush, 2008). This holds particularly true for
assessing the quality of specific teaching practices with instructionally sensi-
tive, reliable, and valid instruments to be tailored each time they are
employed. Conceptually, the characteristics of a high-quality enactment of
embedded formative assessment may be closely related to global factors
characterizing high classroom process quality, particularly cognitive activa-
tion and supportive climate. To activate students cognitively, teachers
must explore and build on students’ prior understanding and engage them
in higher-level thinking processes (Brophy, 2000; Lipowsky et al., 2009).
Likewise, the diagnostic tasks and feedback in embedded formative assess-
ment aim to activate students cognitively by making the learning processes
more explicit to students and by engaging them in learning (Black & Wiliam,
2009). Furthermore, a supportive climate is characterized by a positive
teacher-student relationship as well as constructive learner support through
constructive teacher feedback and a positive approach to student errors and
misconceptions (e.g., Brophy, 2000; Davis, 2003; Klieme et al., 2009;
Lipowsky et al., 2009). Similarly, key strategies of embedded formative
assessment are used for constructive feedback and learner support (Black
& Wiliam, 2009; Hattie & Timperley, 2007). In contrast, the quality of enact-
ment of embedded formative assessment cannot be clearly assigned to effi-
cient classroom management.
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In general, according to meta-analytic findings, quality processes of
classroom instruction are one of the most powerful predictors of student
learning with medium to large effect sizes (e.g., Hattie, 2009; Seidel &
Shavelson, 2007). Moreover, classroom processes moderate the relationship
between student characteristics and learning outcomes: Students at risk of
failure at school show greater achievement in high-quality classrooms than
their peers in low-quality classrooms (e.g., Curby, Rimm-Kaufman, &
Ponitz, 2009; Hamre & Pianta, 2005). More importantly, classroom processes
moderate the effectiveness of ‘‘regimes’’ (Raudenbush, 2008; e.g., treatments,
specific teaching practices, or curricula). O’Donnell (2007) showed that
high-quality instructional strategies moderated the relationship between
a science curriculum condition and middle school students’ achievement.
In their meta-analysis of clinical treatments, Landenberger and Lipsey
(2005) identified the quality of enactment (‘‘higher quality implementation’’;
p. 469) as one of the most powerful moderators of treatment effectiveness.
The same principle also should apply to the implementation of specific treat-
ments such as embedded formative assessment in educational practice.

Aim of This Study and Hypotheses

The aim of this study is to examine the interplay between global factors
of classroom process quality (i.e., an established three-dimensional model;
e.g., Klieme et al., 2009; Pianta et al., 2008) and the specific teaching practice
of embedded formative assessment (e.g., Black & Wiliam, 1998; Kingston &
Nash, 2011) in promoting students’ understanding of the scientific concepts
of floating and sinking. We support calls for high-quality (quasi-)experimen-
tal studies (e.g., Kingston & Nash, 2011; Raudenbush, 2008) to draw more
valid conclusions. We therefore conducted a cluster-randomized interven-
tion study in elementary science classes with standardized treatments and
a control group to test the following hypotheses:

Hypothesis 1:The specific teaching practice of embedded formative assessment
will be effective in supporting students’ science understanding.

Hypothesis 2:Global dimensions of classroom process quality (i.e., cognitive acti-
vation, supportive climate, and effective classroom management) will posi-
tively predict students’ science understanding.

Hypothesis 3:The effectiveness of embedded formative assessment will be mod-
erated positively by classroom process quality (i.e., cognitive activation and
supportive climate). Specifically, the effectiveness of embedded formative
assessment on students’ science understanding, when compared with the con-
trol group, will increase with higher levels of cognitive activation or supportive
climate.

Hypothesis 1 was confirmed in a previous publication focusing on the
effects of various teaching practices on student learning in a subsample of
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the intervention study. In this previous publication, only those classes (n=25)
were considered that showed a minimum implementation of 70% of the treat-
ment and the content matter when compared with the scripted unit on floating
and sinking (see Decristan et al., 2015). Still, it is worth exploring this hypoth-
esis again to understand better the underlying processes involved in embed-
ded formative assessment and how it enhances student learning.

Method

Study Design

This study was part of an intervention study that used a cluster-
randomized controlled trial to compare the effects of different teaching prac-
tices on elementary school students’ conceptual understanding of the
floating and sinking of objects (Project IGEL; Individual support and adaptive
learning environments in primary school). The target population of the study
was students in public elementary schools in a federal state of Germany.
Teachers and principals were contacted by telephone and invited to attend
information sessions on the research project. Each school that volunteered
to participate in the study was randomly assigned to one of the three instruc-
tional conditions of the intervention or to the control group. In the present
article, we focus on one instructional condition, that is, embedded formative
assessment, and the control group. All teachers, including those of the control
group, participated in professional development workshops to learn about the
particular intervention condition. Subsequently, they conducted the predeter-
mined ready-made unit in their elementary science classes, following instruc-
tions set out in a manual and implementing preselected teaching material.
Student data were assessed before and after the unit.

Participants

The sample participating in the present study consisted of 28 teachers
and 551 third grade students from 18 public elementary schools in a federal
state of Germany (embedded formative assessment: 17 teachers, 319 stu-
dents; control group: 11 teachers, 232 students).1The mean class size was
20 students (class size ranged from 10 to 26 students). All of the schools
were located in central Germany in rural (57% of classes) and urban areas.
Participation was voluntary for teachers and students. The mean age of
the teachers (86% female) was 43.4 years (SD= 9.8), and their mean profes-
sional experience was 15.8 years (SD= 9.8). All of the teachers had been
teaching science for the previous five years. The students (48% female)
were 8.8 years old on average (SD= 0.5) and 38% (formative assessment
group: 44%, control group: 30%) reported that at least one of their parents
had been born outside of Germany, and 23% (formative assessment group:
28%, control group: 15%) reported that both of their parents had been born
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outside of Germany. The sample included students from diverse ethnic
backgrounds, mostly from immigrant families speaking Turkish or
a Romanic, Slavic, African, or other (Indo-)Germanic language.

Professional Development Workshops for Teachers

All teachers participating in the study attended a professional develop-
ment workshop on floating and sinking. They also received training on
embedded formative assessment or control group content (parental counsel-
ing). Workshops were held over 4 days (4.5 hours per day) by experienced
trainers. On the first day subject matter from the curriculum, that is, the con-
cept of density (material, density, and density of water relative to the density
of objects), was covered. On the second day embedded formative assess-
ment or control group content was covered. On the third and fourth days
the use of embedded formative assessment for classroom instruction on
floating and sinking and the control group content were covered.

Unit on Floating and Sinking

The unit, which was implemented in both the experimental group and
the control group to control for content matter and sequencing of content,
was designed according to key principles of inquiry-based science education
(for more details, see Decristan et al., 2015; Hondrich, Hertel, Adl-Amini, &
Klieme, in press). The unit was adapted from an empirically evaluated ele-
mentary school unit on the floating and sinking of objects (Hardy et al.,
2006) and covered conceptual aspects of inquiry. The unit included one intro-
ductory lesson of 45 minutes and four subsequent lessons of 90 minutes. To
standardize the unit, all teachers were provided with a detailed manual that
included prestructured lessons with detailed lesson plans and the learning
goals of the four lessons, worksheets on floating and sinking at three different
levels of conceptual understanding, and a box of objects made of different
materials (e.g., steel, Styrofoam, and wax; see Möller & Jonen, 2005) for
teacher demonstrations and hands-on activities for the students.

Curriculum-Embedded Formative Assessment Group and Control Group

After the workshop on the unit on floating and sinking, the teachers par-
ticipated in a training session on embedded formative assessment or control
group content.

Embedded formative assessment.Teachers in the experimental group
received information on the design and formative use of diagnostic tasks
in the curriculum. The open-ended assessments were designed to elicit stu-
dents’ current conceptions and to examine their current level of conceptual
understanding. Furthermore, teachers were provided with information on
formal strategies for supplying feedback to students and on adaptation of
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subsequent instruction. Using a semistructured feedback sheet, teachers
gave students written feedback on their assessment results and input on their
subsequent learning steps, and they assigned differentiated tasks that
matched the students’ current level of conceptual understanding of floating
and sinking (see Hondrich et al., in press, for details). The teachers were
instructed to embed four formal assessments at specific joints in the unit.

Control group.The control group teachers were instructed to use the
standardized science unit but were not given any instruction on using spe-
cific teaching practices. Instead, they completed a workshop on parental
counseling (see Hertel, 2009), which was not expected to affect students’ sci-
ence understanding. We thus aimed to keep workshop times comparable
between the intervention groups as well as to provide content that was
related to teachers’ everyday professional life.
All of the teachers conducted the science unit (with or without embed-

ded formative assessment) in their classes in the second term of the aca-
demic year over a span of 4 weeks at most.

Manipulation Checks

Each class was either video recorded or visited by project members dur-
ing one of the 90-minute units.2A checklist with a standardized list of dichot-
omous items (0 = did not occur, 1 = occurred) was used to check for
adherence to the intended science lesson and the embedded formative
assessment treatment. At least 45% of the classes were scored by two inde-
pendent raters. Interrater agreement was higher than 85% for each item. For
each class, a percentage score was computed for the lesson content (see
Hondrich et al., in press). Teachers’ adherence to the intended science les-
son wasM = 86.15 (SD= 15.53, min = 25, max = 100,N= 28). The
Kolmogorov-Smirnov Z test demonstrated that both groups had similar con-
tent scores (Z= .88,p= .415). The embedded formative assessment checklist
included four dichotomous items addressing the occurrence or nonoccur-
rence of two key categories of diagnosis and formative use of diagnostic
information (see Hondrich et al., in press). A percentage score was com-
puted for each class, and results demonstrated that the treatment compo-
nents were implemented in the embedded formative assessment classes
during the observed lesson (M= 95.59,SD= 13.21, min = 50, max = 100,
N= 17). As expected, embedded formative assessment was not used in
the control group classes (M=0,SD= 0).

Instruments

Classroom Process Quality

Upon completion of the science unit, students rated the classroom pro-
cess quality on a questionnaire that covered three subscales: cognitive
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activation (seven items, Cronbach’sa= .79), supportive climate (nine items,
Cronbach’sa= .89), and classroom management (five items, Cronbach’s
a= .88; see Fauth et al., 2014). Cognitive activation items referred to the
teachers’ exploration of students’ prior concepts and ideas as well as presen-
tation of challenging tasks. Supportive climate items were related to warm
and caring teacher behavior, constructive feedback, and learner support.
Classroom management items were related to the lack of disciplinary prob-
lems and disruptions during classroom instruction. Students were instructed
to focus on the specific science unit on floating and sinking. All items were
rated on a 4-point scale with categories ranging from 1 (strongly disagree)to
4(strongly agree). The intraclass correlations indicated a substantial amount
of variance among the classes (ICC1) and good reliability of the aggregated
ratings on the classroom level (ICC2; see Lüdtke, Trautwein, Kunter, &
Baumert, 2006) for all three scales: cognitive activation (ICC1 = .12, ICC2
= .73), supportive climate (ICC1 = .18, ICC2 = .80), and classroom manage-
ment (ICC1 = .31, ICC2 = .89).

Student Tests

To measure students’ learning outcomes, atest of science understanding
was adapted from previously published and current research on the topic of
floating and sinking of objects (Hardy et al., 2006; Schneider & Hardy, 2013).
The 13 test items included multiple-choice items and two open-ended tasks.
Experts from educational practice and research in science education had
judged the items as valid and highly relevant for the topic of floating and
sinking. Furthermore, in a validation study, Pollmeier et al. (in press)
showed that responses to paper-pencil items were mostly in line with stu-
dents’ responses during interviews to assess conceptual understanding.
Hardy et al. (2006) showed that the test of science understanding of floating
and sinking was related to a transfer test focusing on students’ application of
the science concepts in a wider context. The items on the test of science
understanding were based on a model of three different levels of conceptual
understanding of floating and sinking with students’ responses to the items
scored as either naı̈ve conceptions (0), everyday life conceptions (1), or sci-
entific conceptions (2). In our study, two independent raters coded the
open-ended tasks (kappa = .87; see Gwet, 2012) according to the three levels
of conceptual understanding. Test items were scaled using the Partial Credit
Model (Masters, 1982), and a weighted likelihood estimate (WLE; Warm,
1989) was computed for each student (EAP/PV reliability = .70). The relation-
ship between the WLE scores and students’ grades in science (|r|= .46) was
found to be comparable with findings from previous studies on science com-
petencies (e.g., Schütte, Frenzel, Asseburg, & Pekrun, 2007).
We considered as covariates students’ cognitive ability, science compe-

tence, and language proficiency, which are known to be strongly associated
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with science understanding. Research has shown that general cognitive abil-
ities are strongly connected to abilities in specific subjects at school, espe-
cially mathematics, science, and language (e.g., Gustafsson & Balke, 1993).
Cognitive abilities were assessed using the CFT-20R diagnostic test (Weiß,
2006), a German version of the Culture Fair Intelligence Test, which includes
56 items (Cronbach’sa= .72). Thescience competency testwas adapted from
TIMSS 2007 (Martin, Mullis, & Foy, 2008) comprising the cognitive domains
of knowing, applying, and reasoning. The test is in line with the science cur-
riculum in elementary school in Germany. Experts from educational practice
and research in science education had judged the test items used in our
study to be highly relevant for elementary school science education and
appropriate for third grade students. All items were piloted in class-wide
assessments at the end of second grade. The test was composed of 12 items
that fit the 1PL-Rasch model, and a WLE was computed for each student
(EAP/PV reliability = .70). Furthermore, science education requires being
able to analyze, summarize, and present information in oral or written for-
mats (Lee, 2005) and thus is closely connected with language proficiency
(e.g., Martin, Mullis, Foy, & Stanco, 2012). The language proficiency test
was multiple choice and assessed students’ passive vocabulary and sentence
comprehension in German. It was adapted from diagnostic tests of German
language comprehension (Elben & Lohaus, 2001; Glück, 2011; Petermann,
Metz, & Fröhlich, 2010). For each of the 20 items, a verbal stimulus (a
word or sentence) and a set of four pictures were presented. The students
were instructed to choose the picture that matched the verbal stimulus.
Answers were coded dichotomously (0 = not correct, 1 = correct). A total
score was computed for each student (Cronbach’sa= .72). The relationship
between this total score and students’ family background (a dichotomous
variable; 0 = both parents born in Germany, 1 = at least one parent born out-
side of Germany) was|r|= .39. Although we randomly assigned participat-
ing schools to the intervention conditions, both groups differed in students’
test scores prior to the intervention: Students in the embedded formative
assessment group scored higher than those in the control group on the
test of cognitive ability,t(508) = –3.63,p\.01, and significantly lower on
the tests of science competence,t(516) = 2.51,p\.05, and language profi-
ciency,t(515) = 2.50,p\.05.

Procedure

The intervention took place during the academic school year 2010–2011.
Data were collected from students by trained research staff members follow-
ing standardized instructions. The items were read aloud by staff members
and were presented visually with a projector. Each assessment required
approximately 90 minutes to complete. The individual-level control varia-
bles were assessed at the beginning of the academic school year
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(September–October 2010). In January and February 2011, the teachers con-
ducted once or twice a week over a maximum span of 4 weeks the science
unit comprising 4.5 lessons of 90 minutes each. Conceptual understanding of
floating and sinking was assessed upon completion of the unit (February–
March 2011).

Data Analyses

To account for the hierarchical data structure, we applied multilevel
regression analysis (Raudenbush & Bryk, 2002) with students (Level 1)
nested in classes (Level 2) and students’ science understanding as the out-
come variable. All models were estimated in Mplus 7.11 (Muthén &
Muthén, 1998–2013). We were interested mainly in the relationship between
classroom-level variables (classroom process quality and treatment) and sci-
ence understanding, controlling for the individual-level covariates. The treat-
ment variable was dummy coded (0 = control group, 1 = embedded
formative assessment). All of the individual-level variables were standard-
ized (M=0,SD= 1) and centered at the grand mean (i.e., the mean score
of the sample was subtracted from each individual score in a class; see
Enders & Tofighi, 2007). The individual ratings of classroom process quality
were aggregated to the classroom level to examine differences in ratings
among classes (Lüdtke, Robitzsch, Trautwein, & Kunter, 2009). The aggre-
gated ratings were then standardized (M=0,SD= 1) and centered at the
grand mean (i.e., the average of the class means was subtracted from each
class mean).
First, we included the treatment variable (Hypothesis 1, Model 1) and

the aggregated student ratings of each of the three dimensions of classroom
process quality as independent variables in separate analyses (Hypothesis 2,
Models 2 to 4). Next, we extended the models by simultaneously adding the
treatment variable, one dimension of classroom process quality, and a sec-
ond-level interaction variable that was the product of both classroom-level
variables (treatment3classroom process quality; Hypothesis 3, Models 1
to 3).
A lack of test power is one of the major concerns of small sample sizes.

Because of the small sample size at the classroom level, we conducted
a power analysis using the Monte Carlo simulation method implemented
in Mplus 7 (for an example, see Bolger, Stadler, & Laurenceau, 2012). Data
simulations using 28 classes with an average class size of 20 students achieve
a test powerbof .60 to detect a medium to large effect of a class-level vari-
able (R2= .215), and a powerbof .77 to detect a large effect of a class-level
variable (R2= .300).
As measure of effect size, we reportedR2. With respect toR2, the

explained variance in students’ science understanding at each level of anal-
ysis was reported. In Mplus, the explained variance at the class level referred

Embedded Formative Assessment

13
 at DIPF on November 8, 2016http://aerj.aera.netDownloaded from 

http://aerj.aera.net


to the explained variation in the random intercept after controlling for
individual-level predictors.

Missing Data

The student participation rate was high (97% of the students in all 28
classes, the average participation rate was 96% in the embedded formative
assessment group and 99% in the control group). The participation rate
for each assessment point was at least 92% (min. 91% for each assessment
point by treatment). Of the data, 2% were missing due to students changing
schools or classes. For the variables used in our study, there were no missing
data at the classroom level (aggregated student ratings of classroom process
quality and the treatment variable). The amount of missing data at the indi-
vidual level (i.e., students’ test scores as covariates) ranged from 6.0% for stu-
dents’ science competence to 7.4% for cognitive ability. To deal with missing
data at the individual level, we used the multiple implementation procedure
in Mplus 7.11 to replace each missing value with a set of 10 predicted values.
To this end, we specified an unrestricted (H1) model and included all vari-
ables used in our analysis as well as further individual-level auxiliary varia-
bles (Collins, Schafer, & Kam, 2001) in the imputation model.

Results

Descriptive Results

Table 1 presents the descriptive data analysis of both individual- and
classroom-level variables. To provide a better interpretation of the descrip-
tive data, the mean scores and standard deviations refer to the original metric
of the variables. The students showed cognitive abilities that generally were
comparable with the population of same-aged students in Germany (the
diagnostic test is standardized toM= 100 andSD= 15; see Weiß, 2006).
Regarding science competence, students answered on average 6 of 12 items,
meaning they were able to solve tasks requiring mainly science knowledge.
Students’ mean score of science understanding (8 of 19 items) can be inter-
preted according to the model of different levels of conceptual understand-
ing. This means that students on average rejected naı̈ve conceptions but
were inconsistent in the use of explanations of everyday life. Students’
mean language proficiency (14.8 of a maximum score of 20) was rather
high, but still showed substantial variation in individual scores. Students’ rat-
ings of cognitive activation and supportive climate also were rather high but
at an expected level for elementary school student ratings (e.g., Doll, Spies,
LeClair, Kurien, & Foley, 2010).
All of the variables exhibited substantial variance among classes, as indi-

cated by the intraclass correlations (ICCs). In general, correlations between
variables at the classroom level were greater than at the individual level. This
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holds particularly true for the three dimensions of classroom process quality.
However, Fauth et al. (2014) have shown with a larger sample of elementary
school students’ ratings of science education before the intervention that the
three-dimensional model fit best at both levels of analysis. Table 1 also
shows negative relationships at both levels of analysis between students’ ini-
tial level of science competence and language proficiency and their later
obtained scores of cognitive activation and supportive climate. Negative cor-
relations between students’ preconditions for learning and classroom pro-
cess quality are a well-known result in empirical research (e.g., Anderson,
Ryan, & Shapiro, 1989; Klieme et al., 2008). At the classroom level, teachers
adapt instruction and enhance their engagement in responding particularly
to students with low levels of competence (e.g., Klieme et al., 2008). At
the individual level, students at risk in particular are supposed to receive
more teacher support and thus to report higher levels of classroom process
quality (e.g., for cognitive activation, ‘‘Our teacher asks me what I have
understood and what I haven’t’’; and for supportive climate, ‘‘Our teacher
compliments me when I did something good’’).

Hypotheses 1 and 2: Effects of Embedded Formative Assessment and
Classroom Process Quality on Students’ Science Understanding

Regarding Hypothesis 1, results showed that students’ average level of sci-
ence understanding in the embedded formative assessment group was higher
than in the control group, in which students were taught the same unit on
floating and sinking but received no further specific instructions (Table 2,
Model 1; see also Decristan et al., 2015). For the present article, we also exam-
ined the predictive power of each of the three dimensions of classroom pro-
cess quality on students’ science understanding (Table 2, Models 2 to 4). As
expected in Hypothesis 2, cognitive activation, supportive climate, and class-
room management each had positive effects on students’ learning outcomes.

Hypothesis 3: Interaction Effects Between Embedded
Formative Assessment and Classroom Process Quality

Finally and most importantly, we examined the moderating effects of
both cognitive activation and supportive climate on treatment effectiveness
(Table 3, Models 1 and 2). The results confirmed Hypothesis 3 and revealed
positive interactions between classroom process quality and the treatment
variable: The effect of embedded formative assessment on students’ science
understanding, when compared with the control group, increased with
higher levels of cognitive activation or supportive climate. The effect sizes
at the class level of both interaction models were large. At the same time,
and as expected, the results showed no interaction effect between classroom
management and the treatment variable on students’ science understanding
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(Table 3, Model 3). Figure 1 shows the role of each dimension of classroom
process quality in the effectiveness of the treatment.

Discussion

In this study we examined the interplay between global factors of class-
room process quality and curriculum-embedded formative assessment,
a well-known teaching practice, in promoting elementary school students’
science understanding. To this end, we used data from a cluster-randomized
controlled trial with standardized intervention conditions. We employed
multilevel regression analysis to examine the main and interaction effects
of embedded formative assessment and aggregated student ratings of class-
room process quality on students’ science understanding. First, as previously
presented and discussed by Decristan et al. (2015), embedded formative
assessment is an effective tool to enhance elementary students’ science
understanding (Hypothesis 1). Meta-analyses have revealed the value of for-
mative assessment for student learning (e.g., Hattie, 2009; Kingston & Nash,
2011). However, in this study we demonstrated that the specific contribution
of embedded formative assessment is over and above the effect of merely
teaching content matter: An inquiry-based science unit was conducted

Table 2

Multilevel Regression Analysis Predicting Students’ Science

Understanding From the Treatment (Embedded Formative

Assessment) and Student Ratings of Classroom Process Quality

Model 1 Model 2 Model 3 Model 4

B SE B SE B SE B SE

Level 1: Control variables

Cognitive ability 0.15** 0.04 0.15** 0.04 0.15** 0.04 0.14** 0.04

Science competence 0.25** 0.04 0.25** 0.04 0.25** 0.04 0.25** 0.04

Language proficiency 0.13** 0.05 0.13** 0.05 0.13** 0.05 0.13** 0.05

Level 2: Class-level predictors

Treatment 0.20* 0.11

Cognitive activation 0.09* 0.05

Supportive climate 0.11* 0.05

Classroom management 0.12* 0.07

R2(Level 1) .128 .130 .130 .125

R2(Level 2) .115 .097 .132 .162

Note. The treatment variable is dummy coded (control group = 0, embedded formative
assessment = 1).
*p\.05.**p\.01, one-tailed test.
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with both an experimental group and a control group and supported student
learning (Decristan et al., 2015; Hardy at al., 2006).
Next, we expected aggregated elementary school student ratings of the

three dimensions of classroom process quality (i.e., cognitive activation, sup-
portive climate, and classroom management) to be connected positively
with students’ science understanding (Hypothesis 2). We showed that, for
the larger sample with both intervention conditions, each of the three
dimensions of classroom process had a positive effect on students’ science
understanding, which is consistent with findings from previous research
(Klieme et al., 2009; Lipowsky et al., 2009; Pianta et al., 1997; Pianta &
Hamre, 2009; Reyes et al., 2012).
Finally, the quality of enactment of embedded formative assessment in

class can be linked to global factors of classroom process quality (i.e., cogni-
tive activation and supportive climate; Klieme et al., 2009; Pianta et al., 2008)
and thus to principles of effective teaching (see Good et al., 2009). Consistent
with research on the interplay between quality components and structural
components on learning outcomes (Landenberger & Lipsey, 2005;

Table 3

Multilevel Regression Analysis Predicting Students’ Science Understanding

From the Treatment (Embedded Formative Assessment), Student Ratings of

Classroom Process Quality, and Their Interactions

Model 1 Model 2 Model 3

B SE B SE B SE

Level 1: Control variables

Cognitive ability 0.15** 0.04 0.15** 0.04 0.14** 0.04

Science competence 0.26** 0.04 0.26** 0.04 0.25** 0.04

Language proficiency 0.13** 0.05 0.13** 0.05 0.13** 0.05

Level 2: Class-level predictors

Treatment 0.19* 0.10 0.18* 0.10 0.17 0.11

Cognitive activation –0.06 0.03

Supportive climate –0.08 0.05

Classroom management 0.10* 0.06

Interactions between class-level variables

Treatment3cognitive activation 0.25** 0.08

Treatment3supportive climate 0.30** 0.08

Treatment3classroom management 0.02 0.12

R2(Level 1) .135 .135 .123

R2(Level 2) .437 .629 .206

Note. The treatment variable is dummy coded (control group = 0, embedded formative
assessment = 1).
*p\.05.**p\.01, one-tailed test.
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O’Donnell, 2007), we expected classroom process quality (i.e., cognitive acti-
vation and supportive climate) to enhance the effectiveness of embedded for-
mative assessment (Hypothesis 3). To date, there has not been much work
performed on interaction effects involving embedded formative assessment.
The results of our study confirmed that high levels of cognitive activation or
a supportive climate combined with embedded formative assessment had
the most positive effect on students’ science understanding. The two corre-
sponding interaction models (Table 3, Models 1 and 2) demonstrated large
effects at the classroom level. In contrast, results showed no interaction effect
between classroom management and embedded formative assessment on stu-
dents’ science understanding (Table 3, Model 3).
Our findings indicate that the quality enactment of embedded formative

assessment (i.e., diagnostic tasks, student feedback, and adapted instruction)
is vital for its effectiveness. For instance, diagnostic tests should elicit stu-
dents’ current understanding, and information gathered should correspond
with what is taught in the curriculum and should be interpreted correctly
by the teachers for further adaptation of instruction (Wilson & Sloane,
2000). Furthermore, formal feedback should provide students with informa-
tion on their current conceptual understanding, their learning progress and
learning goals to help and encourage students to take the next learning step
(Hattie & Timperley, 2007; Sadler, 1989).

Figure 1.The moderating effects of classroom process quality on treatment

effectiveness. A = cognitive activation; B = supportive climate; C = classroom

management.
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It should be noted that in our study the diagnostic tests and semistructured
student feedback sheets given to the teachers had been designed for implemen-
tation in the curriculum. The standardized materials for the use of embedded
formative assessment in class had been developed to examine students’ current
level of conceptual understanding and to guide future teaching and learning.
Nevertheless, the effectiveness of the intervention varied with the quality of
classroom processes. Thus, it can be speculated that training teachers in the
use of embedded formative assessmentinclassandprovidingthemwith
high-quality materials is necessary but not sufficient to ensure appropriate
use in the classroom. Rather, our results indicate that the effectiveness of
embedded formative assessment for student learning depends on how the
teacher supports students and how he or she keeps them cognitively active dur-
ing lessons. Thus, compared with the control group, embedded formative
assessmentismosteffectivewhenitisimplementedwithhighlevelsofcogni-
tive activation and student support––dimensions of classroom process quality
that are largely based on an alignment of teacher prompts and feedback with
content-specific student learning trajectories and progressions (e.g., Alonzo &
Gotwals, 2012; Duschl, Maeng, & Sezen, 2011, in the context of science educa-
tion). These global factors of classroom process quality are not necessarily
improved by providing assessment tools and teacher training in formative
assessment practices. Rather, students’ science understanding is enhanced
best when the specific teaching practice (embedded formative assessment) is
combined with high-quality classroom processes (supportive climate and cog-
nitive activation). In addition, further content-related factors should add to the
effectiveness of teaching, as for instance expressed by Good et al. (2009). These
factors were not considered in the present study, where content was standard-
ized for all participating classes. However, there is ample evidence that covering
content––sometimes referred to as opportunity to learn (OTL; see Schmidt &
Maier, 2009)––is a strong predictor of student learning, which is conceptually
independent from teaching practices or classroom process quality.
It also should be noted that we tested interactions between individual-

level covariates with second-level predictor variables in each of our multi-
level analyses to account for interactions between prior group differences
and classroom process quality and the treatment variable. Results showed
a significant cross-level interaction between student cognitive ability and
supportive climate only. Furthermore, considering all cross-level interactions
as covariates in our regression models does not change the main conclusions
we draw from the study.
The importance of both teacher evaluation and teacher training is obvi-

ous. For instance, when designing professional development workshops,
trainers should combine specific teaching practices with strategies to
enhance the quality of enacting those strategies, and a focus on global fac-
tors of classroom process quality. Future studies should explore teacher
training (e.g., duration, emphasis on the quality of implementing training
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content in class) and teacher characteristics (e.g., beliefs, professional expe-
rience) that foster or hinder effective teaching. For instance, an approach to
a broader understanding of teacher development that also takes teachers’
lifetime experiences into account is to consider teachers’ ‘‘embodied under-
standing of practice’’ (Dall’Alba & Sandberg, 2006). Embodied understanding
refers to the way teachers understand their practice (e.g., as knowledge
transfer or facilitating learning) which in turn affects teachers’ acquisition
of knowledge and development of skills. To add further to research on
teaching effectiveness, future research should examine the interplay
between classroom process quality and other teaching practices as well as
the particular connection between global factors of high-quality teaching
and quality components of specific teaching practices (e.g., quality of feed-
back given within formative assessment; see Rakoczy et al., 2013). Finally,
research needs to address a variety of content areas to understand the gen-
eralizability of factors leading to effective teaching, and their connection to
content-related factors such as OTL.

Study Limitations

We examined the specific effects of three dimension of classroom pro-
cess quality on students’ science understanding in 28 classes. Because the
sample size at the classroom level was fairly small for multilevel analysis,
we were not able to integrate the three parallel models (Table 2, Models 2
to 4), or thus to estimate the relative contribution of each dimension com-
pared with the other two dimensions for student learning.
The present article focused on the interplay between class-level variables

(components of effective teaching) while controlling for students’ proximal
variables of science understanding (i.e., cognitive ability, science competence,
and language proficiency). However, we did not consider more distal varia-
bles (e.g., immigrant background, socioeconomic status) that could affect stu-
dents’ science understanding. To provide insight into second language
learners’ science understanding, the role of culture and socioeconomic status,
as well as students’ proficiency in their first and second languages should be
investigated (for a review on this topic, see Lee, 2005).
In this article, global factors of effective teaching were assessed based on

students’ ratings of classroom process quality. Although the value of student rat-
ings has been challenged (e.g., Greenwald, 1997), Benton and Cashin (2012)
point out that there has been ‘‘more than 50 years of credible research on the
validity and reliability of student ratings’’ (p. 2). Recent research has shown
that even elementary school students’ ratings can be used as a reliable and valid
measure of classroom process quality (Allen & Fraser, 2007; Doll et al., 2010;
Fauth et al., 2014). However, for certain features of classroom instruction,
such as cognitive activation, additional examination of the perspectives of
observers and teachers may provide further insight into the links between
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teaching practices, perspectives on classroom process quality, and student
learning outcomes (e.g., Benton & Cashin, 2012; Kunter & Baumert, 2006).
Finally, we did not administer or examine the results of a test of science

understanding before conducting our analysis. Although several studies
have provided evidence for the validity of the items on the test we adminis-
tered (Hardy et al., 2006; Pollmeier et al., in press; Schneider & Hardy, 2013),
particularly preinstructional concepts often do not follow the order of item
difficulty assumed for experts or persons more involved conceptually in
the topic. Rather the conceptual understanding of floating and sinking sys-
tematically develops through exposure to the content during the curriculum,
and students then develop a more consistent view, resulting in more reliable
test scores at the end of the curriculum (see Decristan et al., 2015).

Conclusions

The results of our study show that students’ science understanding
improves through embedded formative assessment when combined with
sufficient levels of global factors of classroom process quality (supportive cli-
mate and cognitive activation). This empirical finding may help scholars find
a compromise between the two general strands of research on teaching
effectiveness outlined at the beginning of our article, namely specific teach-
ing practices versus global aspects of classroom processes. Effective teaching
cannot be measured by either checking for a limited set of ‘‘best practices’’ or
rating global aspects of classroom process quality only. Contrary to popular
belief, no single, reductionist approach to effective teaching will be suffi-
cient. Instead, both can enhance student learning to some extent, but best
results may depend on combining specific and global principles of teaching.

Notes

This research was funded by the Hessian initiative for the development of scientific
and economic excellence (LOEWE).

1The total intervention included 54 teachers and 1,070 students in three instructional
conditions and a control group. The present article extends previous research on treat-
ment effectiveness. It focuses on embedded formative assessment, as it was the only
instructional condition that enhanced students’ science understanding when compared
with the control group (see Decristan et al., 2015).

2For organizational reasons, we could not assess the treatment scores in one control
group class.

References

Allen, D., & Fraser, B. J. (2007). Parent and student perceptions of classroom learning
environment and its association with student outcomes.Learning Environments
Research,10, 67–82. doi:10.1007/s10984-007-9018-z

Alonzo, A., & Gotwals, A. (2012).Learning progressions in science: Current chal-
lenges and future directions. Rotterdam, Netherlands: Sense.

Decristan et al.

22
 at DIPF on November 8, 2016http://aerj.aera.netDownloaded from 

http://aerj.aera.net


Anderson, L. W., Ryan, D. W., & Shapiro, B. J. (1989). The IEA Classroom
Environment Study. Oxford, UK: Pergamon.

Ball, D. L., & Forzani, F. M. (2011). Building a common core for learning to teach, and
connecting professional learning to practice.American Educator,35(2), 17–21.

Baumert, J., Kunter, M., Blum, W., Brunner, M., Voss, T., Jordan, A., . . . Tsai, Y.-M.
(2010). Teachers’ mathematical knowledge, cognitive activation in the class-
room, and student progress.American Educational Research Journal,47,
133–180. doi:10.3102/0002831209345157

Bell, B., & Cowie, B. (2001). The characteristics of formative assessment in science
education.Science Education,85, 536–553. doi:10.1002/sce.1022

Benton, S. L., & Cashin, W. E. (2012).Student ratings of teaching: A summary of
research and literature(IDEA Paper No. 50). Manhattan, KS: IDEA Center.

Black, P., & Wiliam, D. (1998). Assessment and classroom learning.Assessment in
Education: Principles, Policy & Practice,5, 7–74. doi:10.1080/0969595980050102

Black, P., & Wiliam, D. (2009). Developing the theory of formative assessment.
Educational Assessment, Evaluation and Accountability, 21, 5–31.
doi:10.1007/s11092-008-9068-5

Bolger, N., Stadler, G., & Laurenceau, J. P. (2012). Power analysis for intensive longi-
tudinal studies. In M. R. Mehl & T. S. Conner (Eds.),Handbook of research meth-
ods for studying daily life(pp. 285–301). New York, NY: Guilford.

Bransford, J. D., Brown, A. L., & Cocking, R. R. (2000). How people learn.
Washington, DC: National Academy Press.

Brophy, J. (2000).Teaching. Brussels, Belgium: International Academy of Education.
Collins, L. M., Schafer, J. L., & Kam, C. M. (2001). A comparison of inclusive and
restrictive strategies in modern missing data procedures.Psychological
Methods,6, 330–351. doi:10.1037//1082-989X.6.4.330-351

Cornelius-White, J. (2007). Learner-centered teacher-student relationships are effec-
tive: A meta-analysis.Review of Educational Research,77, 113–143.
doi:10.3102/003465430298563

Curby, T. W., Rimm-Kaufman, S. E., & Ponitz, C. C. (2009). Teacher-child interactions
and children’s achievement trajectories across kindergarten and first grade.
Journal of Educational Psychology,101, 912–925. doi:10.1037/a0016647

Dall’Alba, G., & Sandberg, J. (2006). Unveiling professional development: A critical
review of stage models.Review of Educational Research,76, 383–412.
doi:10.3102/00346543076003383

Danielson, C. (1996).Enhancing professional practice: A framework for teaching.
Alexandria, VA: Association of Supervision and Curriculum Development.

Davis, H. A. (2003). Conceptualizing the role and influence of student-teacher rela-
tionships on children’s social and cognitive development.Educational
Psychologist,38, 207–234. doi:10.1207/S15326985EP3804_2
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