

Gantner, Stefan; Großschedl, Jörg; Chakraverty, Devasmita; Harms, Ute Assessing what prospective laboratory assistants in biochemistry and cell biology know: development and validation of the test instrument PROKLAS

Empirical research in vocational education and training 8 (2016) 3, 20 S.

Dokument 2 von 4

Quellenangabe/ Reference:

Gantner, Stefan; Großschedl, Jörg; Chakraverty, Devasmita; Harms, Ute: Assessing what prospective laboratory assistants in biochemistry and cell biology know: development and validation of the test instrument PROKLAS - In: Empirical research in vocational education and training 8 (2016) 3, 20 S. -URN: urn:nbn:de:0111-pedocs-126828 - DOI: 10.25656/01:12682

https://nbn-resolving.org/urn:nbn:de:0111-pedocs-126828 https://doi.org/10.25656/01:12682

Nutzungsbedingungen

Dieses Dokument steht unter folgender Creative Commons-Lizenz: http://creativecommons.org/licenses/by/4.0/deed.de - Sie dürfen das Werk bzw. den Inhalt vervielfältigen, verbreiten und öffentlich zugänglich machen sowie Abwandlungen und Bearbeitungen des Werkes bzw. Inhaltes anfertigen, solange Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen. Mit der Verwendung dieses Dokuments erkennen Sie die

Nutzungsbedingungen an.

use.

Terms of use

This document is published under following Creative Commons-License: http://creativecommons.org/licenses/by/4.0/deed.en - You may copy, distribute and render this document accessible, make adaptations of this work or its contents accessible to the public as long as you attribute the work in the manner specified by the author or licensor.

By using this particular document, you accept the above-stated conditions of

Kontakt / Contact:

Dedocs

DIPF | Leibniz-Institut für Bildungsforschung und Bildungsinformation Informationszentrum (IZ) Bildung E-Mail: pedocs@dipf.de Internet: www.pedocs.de

Assessing what 0

Article title: Assessing what prospective laboratory assistants in biochemistry and cell biology know: Development and validation of the test instrument PROKLAS

- Authors: Stephan Gantner¹, Jörg Großschedl^{1,2}, Devasmita Chakraverty¹, and Ute Harms¹
- Affilation: ¹IPN Leibniz Institute for Science and Mathematics Education, Department for Biology Education, Olshausenstr. 62, 24118 Kiel, Germany
 ²present address: Institute for Biology Education, University of Cologne, Herbert-Lewin-Str. 10, 50931 Cologne, Germany

Assessing what 1

BIOCHEMISTRY (items 1-58)

1 You are supposed to weigh sodium azide. The following pictograms are on the package:

State where you can weigh the substance.

- 01 On a laboratory bench
- 02 On a balance table
- 03 In a sterile bench
- 04 Under a fume hood
- 05 Inside a locked chemical room

Answer

2 The Biuret Method is used to determine the concentration of protein in a solution by building up a complex of copper and protein. Indicate as what the resulting liquid waste should be disposed.

		option
01	Halogenated waste	
02	Non-halogenated solvents	
03	Heavy-metal waste	\boxtimes
04	Dilution for the wastewater treatment plant	
05	Liquid to be autoclaved	

You are using a serum protein electrophoresis 3 Please check the correct statement.

- 01 The separation of the proteins is carried out in an acid environment.
- 02 The proteins are negatively charged in an acidic environment.
- The separation of the proteins depends, among other things, on their 03 charge, size, and structure.
- 04 The separation of the proteins is carried out on a sodium azide membrane.
- 05 The serum protein electrophoresis separates proteins into eight fractions.

4 Check the statement about enzymes which is **INCORRECT**.

A C 01 Enzymes are so-called biocatalysts. Enzymes form an enzyme-substrate complex. 02 Enzymes exit a reaction without deformation. 03 Enzymes are often substrate-specific. 04 05 Enzymes belong to the chemical class of lipids. \square

5 State which of the following statements is **INCORRECT**.

01	Nephelometry is the measurement of light which falls on a silver-antibody	option
	complex and is scattered there.	
02	Turbidimetry is the measurement of the cloudiness of a solution in the	
	course of a silver-antibody reaction.	
03	Densitometry is the quantification of protein bands after a gel	
	electrophoresis (serum-albumin electrophoresis).	
04	During a gel electrophoresis, molecules are separated according to their	
	size.	
05	The higher the concentration of the directly measured analyte in a photometry, the higher is the light translucence of the reaction solution.	\boxtimes

Answei
option
\boxtimes

iswer otion

Answer

Assessing what 3

6 Mix a buffer solution: c (Tris) = 1.5 mol / L; V = 150 mL; pH = 8.3; M (Tris) = 121 g / mol. Space for your own calculations.

Additional file 1 – Test items in English

Evaluate the following statements.

correct incorrect 01 You have to weigh 181.5 g Tris. \boxtimes \boxtimes 02 The Tris is dissolved in 150 ml of water. \square The pH value is adjusted with HCl to c = 1 mol / L. 03 \boxtimes \boxtimes After having adjusted the pH value, you need to top up with water. 04 Π The pH value is not changed by adding water. 05 \boxtimes

7 State which information is needed to produce 150 mL of 50 mM sodium lye.

		option
01	Molarity of NaOH	
02	Concentration of sodium (Na)	
03	Amount of hydroxide (OH)	
04	Molecular mass of NaOH	\boxtimes
05	Density of NaOH	

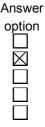
8 State which organic compound is the result of using a Ninhydrin reagent in a thin-layer chromatography.

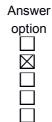
		7 1115 W CI
		option
01	Flavonoids	
02	Glucose	
03	Amino acids	\boxtimes
04	Vitamin C	
05	Carbohydrates	

)	mМ
	Answer option

Answer

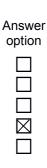
9 In an *Escherichia coli* strain, (safety level S1), the anthrax toxinproducing gene isolated from the anthrax bacillus (safety level S3) is supposed to be cloned. Which laboratory safety level is needed to conduct this work? Please check the lowest level of security needed.

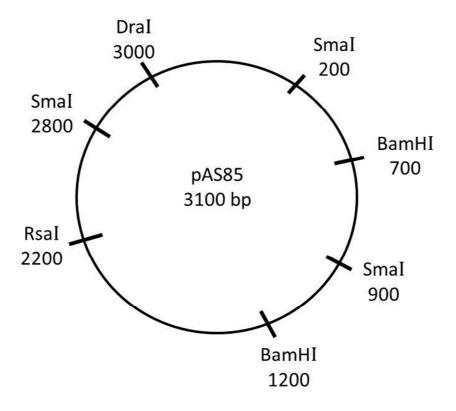

01 Laboratory without a safety level classification


- 02 Laboratory compliant with safety level S1
- Laboratory compliant with safety level S2 03
- 04 Laboratory compliant with safety level S3
- 05 Laboratory compliant with safety level S4
- 10 A 1% agarose gel is used to analyze DNA fragments. During the evaluation, you notice that the bands are not separated well and are located at the bottom of the gel. You want to produce a new gel with a better separation efficiency. Explain how to proceed.

		Allswei
		option
01	Produce a gel with a lower agarose concentration (e.g. 0.5%)	
02	Produce a gel with a higher agarose concentration (e.g. 2%)	\boxtimes
03	Shorten the duration of the gel electrophoresis	
04	Increase the voltage of the gel electrophoresis	
05	An improvement in the separation efficiency is not possible	

- 11 You accidentally drop a sample with the E. coli strain K12 on the laboratory bench; it leaks out. Explain how to proceed because of the potentially hazardous situation.
- 01 Wipe the table with 30% alcohol
- Wipe the table with 70% alcohol 02
- 03 Wipe the table with 96% waste
- 04 Wipe table with a surfactant solution
- 05 Lock the room and arrange a professional waste disposal




12 The following primers are used in a PCR reaction: Primer 1: GATGAGTTCGTGTCCGTACAACT Primer 2: GGTTATCGAAATCAGCCACAGCG. Calculate the melting temperature of the primers with the Wallace rule. [Tm = 4 ° C x (G + C) + 2 ° C x (A + T)]

Space for your own calculations.)

- 01 45 and 49 ° C
- 02 50 and 52 ° C
- $68 \circ C$ for both
- 04 68 and 70 ° C
- 05 70 and 72 ° C

13 The plasmid pAS85 is restricted with the following restriction enzymes. State the size of the resulting fragments.

Please put the results into the number fields, right justified.

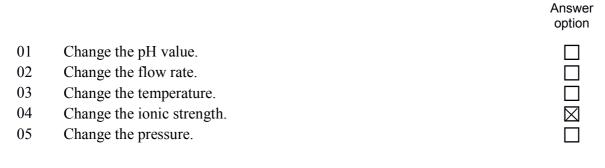
DraI	1. 3 1 0 0
RsaI	1. 3,1,0,0
SmaI	
BamHI	1. 1 ₁ 5 ₁ 0 ₁ 0 2. 2 ₁ 6 ₁ 0 ₁ 0
DraI /BamHI	$1. \begin{bmatrix} 5 & 0 & 0 \end{bmatrix} 2. \begin{bmatrix} 1 & 8 & 0 & 0 \end{bmatrix} 3. \begin{bmatrix} 8 & 0 & 0 \end{bmatrix}$
RsaI / SmaI	1. 7 0 0 2. 1 3 0 0 3. 6 0 0 4. 5 0 0

restriction enzyme(s) resulting fragments

Answer

14 During an ultracentrifugation run, a sudden imbalance occurs. Determine what to do.

		option
01	Immediately unplug the power cord of the centrifuge.	
02	Switch off the centrifuge.	
03	Cancel the centrifugation using the stop button.	\boxtimes
04	Hold the centrifuge to compensate for the imbalance.	
05	Shorten the centrifugation time using the timer.	


15 You are preparing a complete documentation in a report. State what kind of information about the label of a protein gel is <u>NOT</u> necessary.

		option
01	Identification of the samples	
02	Running conditions	
03	Standard sizes	
04	Name of the person conducting the experiment	
05	cm scale of the gel	\boxtimes

16 You are supposed to conduct the purification of a protein from the *Escherichia coli* bacterium. Before cell disruption, you harvest the cells from the culture by centrifugation. State the right treatment to work with the supernatant of the culture.

	•	Answer option
01	Do nothing. E. coli belongs to risk group 1.	
02	Disinfect the supernatant by adding the same volume of ethanol.	
03	Autoclave the supernatant.	\boxtimes
04	Adjust to pH 9 to avoid the settlement of proteins on the vascular wall.	
05	Evaporate the supernatant outdoors.	

17 An ion exchange column is used for the chromatographic separation of proteins. After the sample application, the individual proteins are supposed to be sequentially eluted from the column. For this purpose, you need to change the characteristics of the mobile phase. Indicate how.

18 State under which of these conditions you can still safely use an electrical device.

		option
01	Last electrical test has expired	
02	Cable is brittle	
03	Housing has cracks	
04	Display is defective	
05	Housing has scratches	\boxtimes

19 State which method is used to determine the antibody titer in blood.

 Answer option

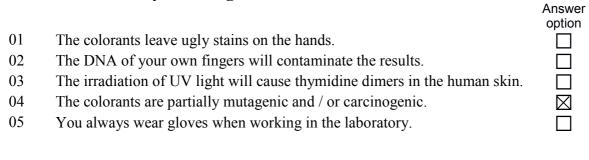
 01
 ELISA

 02
 HPLC

 03
 SDS-PAGE

 04
 Determination using enzyme tables

 05
 Mass spectrometry


20 Which statement with regard to ion-selective electrodes (ISE) is CORRECT?

- 01 The ISE is used to determine sodium, potassium, and chloride.
- 02 The ISE is used to determine calcium.
- 03 The ISE is used to measure protons and neutrons.
- 04 The ISE is used to easily determine immune complexes.
- 05 The ISE is used to easily measure lipids.

21 What does the rate of an enzyme-catalyzed reaction depend on?

		correct	Incorrect
01	Temperature	\boxtimes	
02	Substrate concentration	\boxtimes	
03	External pressure		\boxtimes
04	Presence of isoenzymes		\boxtimes
05	pH value	\boxtimes	

22 You need to wear gloves when you stain DNA in agarose gels. Name the reason by checking the correct answer.

23 Identify the proper disposal method for DNA plasmid waste.

- 01 It can be disposed together with household waste.
- 02 It has to be autoclaved before it can be disposed with household waste.
- 03 It has to be brought to the hazardous waste landfill.
- 04 It has to be stored in special barrels for half a year before it can be disposed.
- 05 It must be pasteurized and then disposed by a special disposal company.

incorroot

Answer option

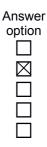
 \boxtimes

24 You want to produce an antibiotic-containing medium. How do you sterilize this correctly? Check the correct answer.

		Answer option
01	Sterilize the antibiotic-containing medium in a drying cabinet.	
02	Autoclave the antibiotic-containing medium.	
03	Sterile-filter the antibiotic-containing medium.	
04	Autoclave the medium and add the antibiotic after cooling using a sterile	\boxtimes
	filter syringe.	
05	Autoclave the medium and antibiotics separately and mix them after	
	cooling.	

25 When measuring a DNA solution in a photometer, you receive the error message "first measure blank." State which action you need to take.

		Answer option
01	Verification and correction of parameters	
02	Measurement of blank value	\boxtimes
03	Measurement of standards to store a valid calibration	
04	Dilution of the sample and re-testing	
05	Entering a sample number	


26 You are cloning plasmid DNA from a safety strain of Escherichia coli K 12 JM109. Explain which measures you need to consider when handling the safety strain in the laboratory.

		Answer option
01	Since this is a safety strain, I do not need to take any precautions.	
02	Before and after work cleaning and disinfecting the laboratory is necessary.	
03	Remaining bacterial waste can simply be put into the sink.	
04	Bacterial waste and contaminated equipment and vessels should be autoclaved or disinfected.	\boxtimes
05	The bacterial suspension can be centrifuged in unsealed vessels.	

27 For the preparation of polyacrylamide gels, 100 ml of a gel solution which contains 14.4 g acrylamide (a) and 0.6 g of N, N'methylenebisacrylamide (b) have been prepared. Calculate the total concentration (T) of acrylamide and N, N'-methylenebisacrylamide, as well as the degree of crosslinking (c) for the acrylamide gel.

$$T = \frac{(a+b) \cdot 100\%}{V}$$
$$C = \frac{b \cdot 100\%}{a+b}$$

- 01 T = 20% and C = 5%
- 02 T = 15% and C = 4%
- 03 T = 15% and C = 5%
- 04 T = 14% and C = 4%
- 05 T = 10% and C = 4%

28 Using a discontinuous SDS-polyacrylamide gel electrophoresis, the molar masses of the subunits of Immunoglobulin G (IgG) are to be determined. IgG is composed of four subunits, of which two identical light chains (L chains) and two identical heavy chains (H chains) can be found. Taking into account the migration routes of the protein marker from the pherogram, interpret the molar mass of H-chains and L-chains (in kDa).

Protein Marker (left lane): 118 kDa, 90 kDa, 50 kDa, 36 kDa, 27 kDa, 20 kDa; IgG sample (right lane)

- 01 36 and 95 kDa
- 02 25 and 50 kDa
- 03 50 and 100 kDa
- 04 25 and 90 kDa
- 05 10 and 25 kDa
- 29 The active genes of a liver cell are supposed to be analyzed. For doing so, RNA is isolated, transcribed into cDNA, and then amplified using a PCR. Name two of the following enzymes which are used in this procedure.

		correct	Incorrect
01	Reverse transcriptase	\boxtimes	
02	Primase		\boxtimes
03	Human polymerase δ		\boxtimes
04	Polymerase I from E. coli		\boxtimes
05	Taq polymerase	\boxtimes	

Answer
option
\boxtimes

A . .

30 Negative and positive controls are important when running a PCR. You encounter that the negative control is showing a positive result. Are these statements correct or incorrect?

- 01 Mix-up of the negative and positive controls
- 02 Overaging of reagents
- 03 Primer concentration is too high
- 04 Inaccurate pipetting and / or opening of the reaction vessels
- 05 Contamination of reagents

31 State the correct wavelength for measuring an unlabeled protein.

		Answer option
01	260 nm	
02	280 nm	\boxtimes
03	364 nm	
04	405 nm	
05	550 nm	

32 You have separated proteins in a SDS-polyacrylamide gel according to their size. You have also run a standard size with proteins of known molar mass. How do you determine the molar mass of an unknown protein? Select the correct method.

01	You have to scale the logarithm of the known molecular weights of proteins to their migration distances. In the following, you can calculate the molar mass of the unknown protein on the basis of its migration distance.	Answer option
02	The migration distance of proteins is not proportional to the molar masses. Therefore, the molar mass of an unknown protein can only be determined when its' migration distance corresponds to one of the standard proteins.	
03	The molecular weight of an unknown protein can be calculated using the rule of three approach with the migration distances of the neighboring standard proteins.	
04	You cut out the protein band and determine its' dry weight.	
05	You compare the color intensity of the unknown protein band with those of standard.	

correct incorrect

33 What does Lambert-Beer's law state? Please check the correct answer option.

01	$E = \varepsilon \cdot c \cdot d$	Answer option
02	$\varepsilon = E \cdot c \cdot d$	
02	$c = \frac{\varepsilon \cdot d}{E}$	
03		
04	$E = \frac{c \cdot d}{\varepsilon}$	
05	$d = \varepsilon \cdot E \cdot c$	

34 Name the function of the filter on a photometer.

		Answer option
01	Generation of light	
02	Removal of stray light	
03	Selection of monochromatic light	\boxtimes
04	Prevention of stray light	
05	Prevention of fluorescence	

35 Explain what is meant by the Michaelis-Menten constant.

		Answer option
01	The affinity of an enzyme for a coenzyme	
02	The substrate concentration at which the reaction rate reaches exactly half	\boxtimes
	of the maximum speed	
03	The relationship between substrate concentration and enzyme inhibition	
04	The relationship between substrate concentration and activators	
05	The relationship between substrate concentration and coenzyme	

36 Polyacrylamide gels are prepared by pouring an acrylamide solution between 2 glass plates and then polymerizing it there. Acrylamide is indicated by the following pictograms:

Danger

Evaluate the following statements about the handling and disposal of this solution.

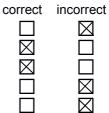
		correct	incorrect
01	Wear gloves when pouring the gel.	\boxtimes	
02	Acrylamide disintegrates in air.		\boxtimes
03	The substance is inactivated and harmless when acidified.		\boxtimes
04	The solution is disposed of as chemical waste.	\boxtimes	
05	After polymerization, you can be sure that no acrylamide is present		\boxtimes
	anymore.		

37 You want to destain a SDS-gel. You need ethanol (200 mL), acetic acid (80 mL) and water (520 mL). Where do you find the right H and P phrases and the necessary pictograms for labeling the storage bottle? Evaluate the following statements.

		Answer- option
01	The instruction on the Material Safety Data Sheet of a renowned manufacturer should be followed.	\boxtimes
02	Treat the solution the same way as each of the individual solution it consists of.	
03	In such small amounts there is no need to search for the H- and P-phrases.	
04	The laboratory security officer is in charge of a risk assessment.	
05	The management department should keep a register and files in how to handle such solutions.	

Decide whether the following statements regarding the use of 38 protein-containing solutions are correct or incorrect.

		correct	incorrect
01	Enzyme concentrates used for the detection of glucose in food and culture supernatants are maintained at 37 ° prior to use.		\boxtimes
02	Frozen samples are mixed well after thawing.	\boxtimes	
03	Blocking solutions which contain proteins for western blot membranes are usable for three weeks if stored at room		\boxtimes
	temperature.		
04	Antibody solutions are stored at 2 - 4 ° C.	\boxtimes	
05	Frozen enzyme solutions can be thawed when incubated at 95 ° C for 10 min.		\boxtimes


Antibodies can be efficiently cleaned using a protein A column. 39

Please check the **INCORRECT** statement.

		Answer
		option
01	The antibodies bind with their variable part on the column.	
02	The antibodies can be eluted when the pH value of the mobile phase is 2-3.	\boxtimes
03	Protein A binds only human antibodies.	
04	The column material contains complexed nickel.	
05	The elution of the antibodies is carried out by addition of the antigen.	

40 Assign the following statements to macro enzymes.

- 01 A complex of enzyme with albumin. 02 A complex of enzyme and immunoglobulins. \boxtimes 03 An oligomer of enzymes. \boxtimes An increased concentration of coenzymes. 04
- An increased concentration of activators. 05

Additional file 1 – Test items in English

Assessing what 17

Answer option

 \square

 \square

 \square

Where do you NOT get information on the storage of reagents? 41 Please state by checking.

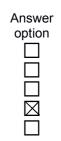
Internet	
Material Safety Data Sheet	
Merck Index	
Laboratory Safety Officer	
Management	

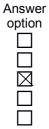
- 42 You want to determine the concentration of your prepared DNA by using a photometer. Name the wavelength at which DNA has its' absorption maximum.
- 01 340 nm

01

02

03


04

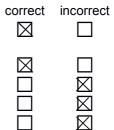

05

- 02 180 nm
- 03 260 nm
- 04 640 nm
- 05 420 nm

43 Water is sometimes treated with DEPC. State the reason.

- 01 To make the water free of lipase
- 02 To make the water free of protease
- 03 To make the water free of amylase
- 04 To make the water free of RNase
- 05 To make the water free of cellulase

44 State the proper procedures for sterile filtration of small amounts of samples using a sterile filter and a syringe.

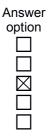

01	The sterile filter is placed on the bottom, the green stamp is removed, the sample is loaded, the green stamp is put in again, and the sample is injected into a sterile vessel through the sterile filter.	Answer option
02	The sample is drawn up into the syringe without the filter and then injected into a sterile vessel through the sterile filter.	\boxtimes
03	The sample is drawn up into the sterile syringe through the sterile filter. Then the sterile filter is removed and the sample is placed in a sterile vessel.	
04	The sample is drawn up into the sterile syringe through the sterile filter and then passed through the sterile filter back into a sterile vessel.	
05	The sample is drawn up into the sterile syringe through the sterile filter, the green stamp is removed, and the sample is placed in a sterile vessel.	

- 45 You isolate DNA from leukocytes and measure the optical density to determine the DNA concentration. This measurement reveals a 1.2 absorption ratio of the A260 nm and A280 nm wavelengths. What does this value tell you about the purity of your prepared DNA? State the correct answer.
- 01 The solution contains DNA.
- 02 The solution contains DNA and proteins.
- 03 The solution contains DNA and cell-wall components.
- 04 The solution contains bacteria.
- 05 The solution contains RNA.

Answer option

46 What does EDTA cause in a buffer used for DNA isolation? State the correct and incorrect effects.

- 01 EDTA inhibits Mg2+ ions which are necessary to maintain the structure of the cell wall.
- 02 EDTA inhibits DNA-degrading enzymes.
- 03 EDTA promotes the solubility of lipids in the cell membrane.
- 04 EDTA forms insoluble RNA complexes.
- 05 EDTA is used to precipitate proteins.

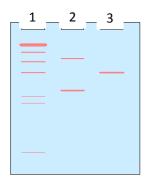


47 You want to harvest bacteria for a transformation. The optimal growth phase is reached when the bacterial suspension shows an optical density (OD_{600nm}) of 0.35. You need a total of 5 x 10^{10} / mL of bacteria. Calculate which amount of bacterial suspension you have to produce.

 $1 \text{ OD}_{600\text{nm}} = 8 \text{ x } 10^8 \text{ bacteria / mL}$

Space for your own additional calculations.

- 01 about 70 mL
- 02 about 130 mL
- 03 about 180 mL
- 04 about 240 mL
- 05 about 350 mL



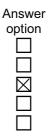
48 Which restriction enzyme is needed to cut open a plasmid when it contains the sequence 5'-ACCTGCAGATT-3'? Please check the correct answer.

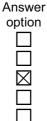
			option
01	ApaLI	with the cutting sequence 5'-GTGCAC-3'	
02	<i>BamH</i> I	with the cutting sequence 5'-GGATCC-3'	
03	EcoRI	with the cutting sequence 5'-GAATTC-3'	
04	HindIII	with the cutting sequence 5'-AAGCTT-3'	
05	PstI	with the cutting sequence 5'-CTGCAG-3'	\boxtimes

49 After an electrophoretic separation, plasmid pBR322 (bp 4361) DNA loaded onto agarose gel shows two bands in a pherogram. When the plasmid is cut with the restriction enzyme Eco RI, the gel only shows one band, which is arranged between the two bands of the uncut DNA. Explain the different migration routes of cut and uncut plasmid DNA.

DNA marker (lane 1): 23130bp, 9416 bp, 6557 bp, 4361 bp, 2322 bp, 2027 bp, 564 bp; uncut plasmid DNA (lane 2); cut with Eco RI plasmid DNA (lane 3)

		correct	incorrect
01	The uncut plasmid DNA contains the open ring and the supercoiled form.	\boxtimes	
02	The isolated plasmid is heavily contaminated with foreign DNA.		\boxtimes
03	The cut plasmid DNA is present in a linear double-stranded form and travels at the same speed as a corresponding DNA fragment in the DNA markers.	\boxtimes	
04	The supercoiled form of plasmid DNA is very compact and therefore travels quickly through the gel.	\boxtimes	
05	In gel electrophoresis, the spatial structure of the DNA is not important.		\boxtimes


- 50 Using an agarose gel electrophoresis, DNA fragments of the sizes 500-6000 bp are supposed to be separated. Provide the required amount of agarose (w / v) for the electrophoresis gel.
- 01 0.2%
- 02 0.5%
- 03 1.2%
- 04 1.8%
- 05 2.0%
- 51 When a PCR program is finished, the PCR reactions are cooled in the thermal cycler at 4 ° C. State the main reason for this cooling step.


		Answer option
01	Excess dNTPs in the PCR solution would otherwise eliminate their phosphate residues.	
02	Without the cooling step, the DNA polymerase would catalyze unspecific primer extensions.	\boxtimes
03	Without the cooling step, the DNA polymerase would decompose.	
04	The PCR products would be reduced at higher temperatures.	
05	Actually, the cooling step is unnecessary.	

52 In a PCR approach with a total volume of 50 μ L, the concentration of Mg²⁺ ions should be 2 mmol / L. As a stock solution, an MgCl2 solution with a molar concentration of 25 mmol / L is available. Evaluate which volume of the MgCl₂ solution must be pipetted into the PCR mixture.

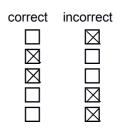
Space for your own calculations.

- 01 5 μL
- 02 10 μL
- 03 4 μL
- 04 3 μL
- 05 2 μlL

53 For the implementation of gel electrophoreses, 250 mL of a 10-fold TBE buffer are available. Calculate the maximum volume of 1x TBE buffer can be prepared from the 10x buffer?

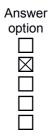
Space for your own calculations.

- 01 0.5 L
- 02 2.5 L
- 03 1.0 L
- 04 2.0 L
- 05 5.0 L


54 State the aim which is pursued in carrying out a PCR.

- 01 Replication of the entire DNA.
- 02 Amplification of a defined portion of a DNA.
- 03 Reproduction of the primer.
- 04 Cutting the DNA into shorter fragments.
- 05 Determination of the nucleotide sequence in the primers.
- 55 You want to centrifuge equally filled test tubes in a centrifuge with a six-place rotor. Check all options which specify a correct number of test tubes which can be centrifuged simultaneously.

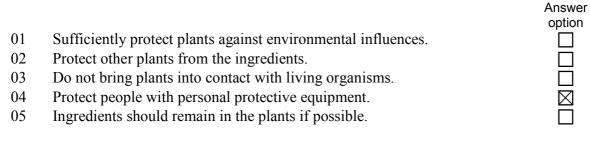
		correct	incorrect
01	2	\boxtimes	
02	3	\boxtimes	
03	4	\boxtimes	
04	5		\boxtimes
05	6	\boxtimes	


56 State the correct structure of human DNA.

- 01 single-stranded
- 02 double-stranded
- 03 linear
- 04 circular
- 05 ssDNA

 \boxtimes

57 Many plasmids contain a polylinker (multiple cloning site = MCS). State the reason.


- 01 It is necessary in order to start the replication of the plasmid at the origin
- 02 It is necessary in order to not destroy the plasmid when cloning.
- 03 It is important in order to insert the DNA into the plasmid easily when cloning.
- 04 It is necessary in order to link restriction enzymes.
- 05 It is necessary in order to stop the translation of the plasmid.

58 It is necessary to follow the rules of Genetic Engineering Act when working in genetic engineering. Determine whether the rules have to be followed during these operations.

- 01 When culturing the laboratory strain of E. coli JM109 without plasmids.
- 02 When culturing the laboratory strain of E. coli JM 109 with a plasmid insert (pZL1).
- 03 When restricting the plasmids with inserts (pLZ1).
- 04 When conducting a PCR of the gene region PV92 in the human genome.
- 05 When transcribing RNA of the gene region PV92 in the human genome.

CELL BIOLOGY (items 59-92)

59 A great number of plants contain substances of which tiny doses can already disturb the metabolism of living organisms and can directly or indirectly exert toxic effects. What do you need to consider while cultivating and processing plants which contain hazardous substances?

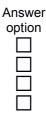
rigin.	Answer
en	option

Answer option

 \square

60 You are measuring the oxygen production of isolated chloroplasts. For doing that, you degenerate the electron transport with dinitrophenyl (DNP), so that proton gradients are destroyed and the energy flow inside the cells of living organisms is stopped. State how to deal with a small amount of DNP waste.

		Answer option
01	Pour the waste down the laboratory sink or directly dispose into the public garbage can.	
02	Identify waste authority or immediately notify the local garbage disposal service.	
03	Heat waste slightly in a double boiler and evaporate appropriately under hood.	
04	Collect waste according to regulations and relevant national regulations for	\boxtimes


- 04 Collect waste according to regulations and relevant national regulations for a proper disposal.
- 05 Freeze waste quickly and permanently stored in freezer at -18 ° C.

61 Specify what you need to consider when autoclaving liquids.

		Answer
		option
01	Vessels should always be tightly closed.	
02	Only one vessel at a time should be autoclaved.	
03	Fluids must not be autoclaved.	
04	Vessels should be slightly open.	\boxtimes
05	Liquid must be mixed well before autoclaving.	

62	You have received two petri dishes which contain merely a culture
	medium from your lab manager. You are supposed to place them
	openly into a sterilized safety workbench. Explain the reason for
	such a work order.

- 01 The laminar air flow needs to be pointed out.
- 02 The culture media need to be sterilized.
- 03 It is used to check your knowledge because this is not allowed.
- 04 The sterilized safety workbench is supposed to be contaminated to show you the relevance of working under sterile conditions.
- 05 It is used to check whether the safety workbench was sufficiently sterilized.

 \boxtimes

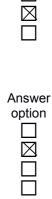
Assessing what 26

Answer option

63 Point out what the term "sterile" stands for.

- 01 Not capable of reproduction
- 02 Free of bacterial DNA
- 03 Heated
- 04 Nonviable
- 05 Free of media

64 Name under which conditions culture media are autoclaved.


- 01 100 ° C for 20 min
- 02 121 ° C for 20 min
- 03 85 ° C for 10 min
- 04 $135 \circ C$ for 3 seconds
- 05 72 $^{\circ}$ C for 15 seconds

65 Explain what is meant by the term "pasteurization."

A complete sterilization.
A partial disinfection after which only pathogens survive.
A partial disinfection during which only pathogens are killed.
A partial disinfection during which all saprophytes are killed.
A neutralization of food taste.

66 Agar agar is a polysaccharide from algae and is used as nutrition for culture media. State the purpose of such an additive.

		Answer option
01 02	nitrogen source carbohydrate source	
03	buffering agent	
04	gelling agent	\boxtimes
05	lubricant	

Answer
option
\boxtimes

67 State the approach to cultivate an aerobic culture.

- 01 Incubation in high layer
- 02 Shaking culture
- 03 Koch's method to pour media plates
- 04 Incubation using an anaerobic jar
- 05 Incubation in low layer

68 Which object lens with a 10x eyepiece magnification is needed for a precise light microscopic examination of bacteria? Please check the correct answer.

		Answer
		option
01	2.5x object lense	
02	4x object lense	
03	10x object lense	
04	40x object lense	
05	100x object lens (oil immersion object lense)	$\overline{\boxtimes}$

69 What do you need to know prior to the disposal of laboratory waste? Please check the correct answer.

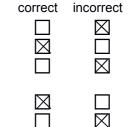
- 01 Chemical composition of the material02 Temperature of the material
- 03 pH value of the material
- 04 Color of the material
- 05 Smell of the material

70 Which of the following is the prescribed method for inactivating liquid and solid waste? Please check the correct answer.

		option
01	flaming	
02	disinfection	
03	sterile filtration	
04	UV radiation	
05	autoclaving	$\overline{\boxtimes}$
		_

Answei
option
\boxtimes

Answer


Answer option

71 Which of the following could compromise sterility during sterile work? Please check the correct answer.

- 01 Touching the work surface with the pipette tip.
- 02 Flaming glass bottles.
- 03 Holding bottles in a 45-degree angle while opening.
- 04 Open bottles only as long as necessary.
- 05 Do not put down the lid.
- 72 Disposable materials (like pipettes or vessels) are often used when working with cell cultures. State how to correctly dispose such material.
- 01 Autoclave and then dispose as residual waste.
- 02 Dispose directly as residual waste.
- 03 Autoclave and dispose as hazardous waste.
- 04 Dispose in the can for recycling packages and plastics.
- 05 Dispose as hazardous waste.
- 73 The abbreviation GLP stands for Good Laboratory Practice. Arrange the correct statement to the corresponding concept.
- 01 Quality assurance system for laboratory databases
- 02 Quality assurance system for clinical safety tests
- 03 Quality assurance system for health safety studies
- 04 Quality assurance system for the training of laboratory technicians
- 05 Quality assurance system for the production of genetic cloning
- 74 Incubatorsfor cell cultures are gassed with CO2. State which safety regulations must be followed when a compressed gas cylinder is stored in the laboratory.
- 01 Gas cylinders must be stored in secure cooling chambers.
- 02 Gas cylinders must be secured against falling over with chains.
- 03 Gas cylinders must be stored horizontally and protected against rolling.
- 04 Valves must be protected against tearing with protective caps.
- 05 No special safety regulations must be followed for non-flammable gases.

Answer-
option
'm
X

Assessing what 29

Answer

75 When cultivating cells, safety measures must be taken. Assign the correct safety measures to the areas of protection.

	the correct safety measures to the areas of protection.		
		Protecting	Protecting
		cell	people
		cultivation	
01	Doors must be kept closed during the procedure.	\boxtimes	
02	Eating or drinking is not allowed in the laboratories.	\boxtimes	
03	After the procedure is finished, wash and disinfect your hands.		\boxtimes
04	Avoid aerosols.	\boxtimes	
05	Only the needed equipment should be placed on the laboratory table.	\boxtimes	

76 Assess the risks which can originate from an established cell line of risk group 1.

	8	correct	incorrect
01	Cell cultures may contain retroviral DNA sequences.	\boxtimes	
02	People without antibodies against hepatitis B may work with these cells.	\boxtimes	
03	Nursing mothers are allowed to work with these cultures.	\boxtimes	
04	There are no known incidents of any threat to humans or the environment.	\boxtimes	
05	Working with these cell lines is permitted only in safety workbenches.		\boxtimes

77 State the substances which are <u>NOT</u> used for the preparation and coloration of animal tissues and pose a health hazard.

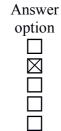
opt	tion
01 Formalin	
02 Hematoxylin	\triangleleft
03 Eosin	
04 Cyanin	
05 Methanol	

78 State the components of a microscope which are needed for a phase contrast microscopy.

01	UV lamp
01	e i iainp

- 02 Tubus
- 03 Oil immersion lens
- 04 Condenser with aperture diaphragm
- 05 Condenser without aperture diaphragm
- **79** You have extracted the photosynthesis pigments from a tobacco plant using acetone (F, Xi). You subsequently separated them by a thin layer chromatography using a DC plastic film. After the frontline has moved 8 cm away from the starting point, you stop the chromatography. Then, you measure that the green-colored lines of your samples went a distance of 6.2 cm from the start. You calculate the retention factor (Rf) by dividing the measured distance of the track start line to the line of the substance Sx by the track start line to the solvent front Sf:

$$R_f = \frac{S_x}{S_f}$$


On the basis of the value R_f, determine which photosynthesis pigment can be assigned to the line.

Space for your own calculations.

- 01 Carotene ($R_f = 0.98$)
- 02 Chlorophyll a ($R_f = 0.82$)
- 03 Chlorophyll b ($R_f = 0.78$)
- 04 Lutein (Rf = 0.74)
- 05 Neoxanthin ($R_f = 0.54$)

Answer option

80 You want to autoclave some bottles with media. State which temperature you should set the autoclave at.

- 100°C 01
- 121°C 02
- 03 180°C
- 200°C 04
- 05 225°C

81 State for which findings no further diagnostics are required.

		optio
01	Midstream urine: bacterial count 10 ⁵ CFU / mL, inhibitors not detected	
02	Midstream urine: bacteria count 10 ⁵ detected CFU / mL, inhibitors	\boxtimes
03	Bladder puncture urine: bacterial count 10 ⁵ CFU / mL, inhibitors not detected	
04	Midstream urine: bacteria count: 10 ² cfu / mL, inhibitors not detected	
05	Bladder puncture urine: bacterial count 10 ² CFU / mL, inhibitors not detected	

82 You want to collect information in order to examine ticks for Borrelia burgdorferi. You believe it would be the best to browse for articles in journals and the internet. State the web page which gives you access to suitable articles.

		option
01	NIB Tickmed (National Institute of Biology)	
02	NCBI Pubmed (National Center for Biotechnology Information)	\boxtimes
03	NOW Pubbac (National Office for Wildlife)	
04	NFA DNA Bank (National Forest Administration)	
05	HortiPlex database (Horticultural Database)	

83 State which of the following statements describes the principle of Neubauer's counting chamber to determine the cell number of a cell suspension.

- 01 Inoculation with nutrient solution after dilution
- 02 Cells are counted after incubation
- 03 Cells are cultivated in Neubauer's counting chamber
- 04 Cell count in the visible quadrant suggests the total number of cells
- 05 Sample is diluted in decimals

Answer
option
\boxtimes

Answer

Answer option

option

 \boxtimes

- 84 The enzyme RubisCO (ribulose-1.5-bisphosphate carboxylase) fixes CO₂ as a key enzyme of the Calvin cycle in the so-called dark reaction of photosynthesis. You want to purify the enzymes of the Calvin cycle from isolated chloroplasts. State where in a chloroplast the RubisCO can be localized.
- 01 In the outer membrane of a chloroplast
- 02 In the thylakoid membrane of a chloroplast
- 03 In the matrix (stroma) of a chloroplast
- 04 Inside a thylakoid granule of a chloroplast
- 05 In the inner membrane of a chloroplast
- 85 A first important distinction for the determination of bacteria is the classification into Gram-positive and Gram-negative. This distinction can be easily realized with the so-called Gram staining. Arrange the correct steps for a Gram staining in a chronological order.

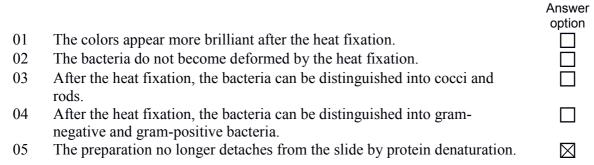
01	Heat fixation, forming a water-soluble paint (Lugol's solution), crystal violet staining, differentiation (wash color out with ethanol),	option
	counterstaining with safranine	
02	Crystal violet staining, heat fixation, counterstaining with safranine, differentiation (wash color out with ethanol), formation of a water-soluble	
	paint (Lugol's solution)	
03	Heat fixation, crystal violet staining, formation of a water-soluble paint (Lugol's solution), differentiation (wash color out with ethanol),	\boxtimes
04	counterstaining with safranine Heat fixation, differentiation (wash color out with ethanol), crystal violet staining, formation of a water-soluble paint (Lugol's solution),	
	counterstaining with safranine	
05	Crystal violet staining, formation of a water-soluble paint (Lugol's solution), heat fixation, counterstaining with safranine	

Answer

86 Lugol's solution is used for Gram staining. State the role of iodine in this process.

	-	Answer option
01	Iodine colors the bacterial cell wall blue due to its high starch content.	
02	Together with crystal violet, iodine forms an iodine dye complex which cannot be washed out.	\boxtimes
03	Iodine facilitates the penetration of the crystal violet solution into the cell.	
04	Iodine kills pathogenic organisms.	
05	Iodine helps the dye attach to the cytoplasmic membrane.	

87 To produce a selective nutrition medium for a bacterial cultivation, an antibiotic is needed. State the correct procedure.


 Control of the antibiotic is isolated from the cultivation medium, autoclaved, and then added to the nutrition medium under sterile conditions. The antibiotic is sterile-filtered and added to the autoclaved cultivation medium when the medium is cooled down. In a final step, the antibiotic is added on top of already prepared media plates. The antibiotic is added to the autoclaved cultivation medium immediately after sterilization. 	01	The antibiotic is autoclaved together with the remaining ingredients of the cultivation medium.	Answer option
 The antibiotic is sterile-filtered and added to the autoclaved cultivation medium when the medium is cooled down. In a final step, the antibiotic is added on top of already prepared media plates. The antibiotic is added to the autoclaved cultivation medium immediately 	02	The antibiotic is isolated from the cultivation medium, autoclaved, and	
 medium when the medium is cooled down. In a final step, the antibiotic is added on top of already prepared media plates. The antibiotic is added to the autoclaved cultivation medium immediately 	13		\boxtimes
plates.05 The antibiotic is added to the autoclaved cultivation medium immediately	55		
)4		
)5		

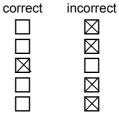
С

88 For a more precise evaluation of bacteria, preparations are stained. Which of the options is the most important polychromatic coloring? Please check the correct answer.

		option
01	Neisser staining	
02	Ziehl-Neelsen staining	
03	Differential staining according to GRAM	\boxtimes
04	Spore staining according to DORNER	
05	Methylene blue solution according to LÖFFLER	

89 Why is a heat fixation performed prior to the Gram staining? Please check the correct answer.

90 Which urine can be used for a bacterial count measurement in the case of an acute urinary tract infection? Please check the correct answer.


91 **Tissue cell cultures are grown in special cultivation flasks.** State under which conditions adherent cells can be grown.

- 01 Bottles must be sealed airtight.
- 02 Bottles must be sterile.
- 03 Bottles must be large.
- Bottles should be of good optical quality. 04
- 05 Bottles should consist of cloudy glass.

92 Cell lines can be stored in liquid nitrogen at – 196 ° C for years without losing their viability. Assess the following statements.

		correct	incorrect
01	Cell lines can be also stored at - 20 ° C.		\boxtimes
02	Cell lines can be also stored at - 80 ° C.	\boxtimes	
03	Glycerin is used as a protective substance.	\boxtimes	
04	Dimethylsulfoxide prevents the crystal formation of water inside and outside of the cell.	\boxtimes	
05	The freezing process should be slow.	\boxtimes	

