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ABSTRACT

Despite the importance of scientifc inquiry in science education, researchers 
and educators disagree considerably regarding what features defne this 
instructional approach. While a large body of literature addresses theoretical 
considerations, numerous empirical studies investigate scientifc inquiry on 
quite diferent levels of detail and also on diferent theoretical grounds. Here, 
only little systematic research has analysed the diferent conceptualisations 
and usages of the overarching construct of scientifc inquiry in detail. To close 
this gap, a review of the research literature on scientifc inquiry was conducted 
based on a widespread approach to defning scientifc inquiry as activities 
that students engage in. The main goal is to provide a systematic overview 
about the range and spectrum of defnitions and operationalisations used 
with regard to single activities of the inquiry process in empirical studies. 
The fndings from the review frst and foremost illustrate the variability in 
the ways these activities have been operationalised and implemented. 
For each activity, studies difer signifcantly not only with respect to the 
focus, explicitness and comprehensiveness of their operationalisations but 
also with regard to the consistency of their implementation in the form of 
instructional or interventional components in the study and/or in the focus 
of the assessment of student performance. This has signifcant implications 
regarding the validity and comparability of results obtained in diferent 
studies, e.g. in the context of discussions concerning the efectiveness of 
inquiry-based instruction. In addition, the interrelation between scientifc 
inquiry, scientifc knowledge and the nature of science seems to be 
underexplored. The conclusions make the case for further theoretical work 
as well as empirical research.

Introduction

In the last few decades, engaging students in the thinking processes and activities of scientists – often 

referred to as scientifc inquiry or inquiry-based instruction – has become a fundamental approach in 

science teaching and learning (National Research Council, 1996, 2012). Due to its importance, a huge 

body of research regarding the efectiveness of scientifc inquiry exists – resulting, however, to some 

extent in inconclusive fndings (for an overview, see e.g. Blanchard et al., 2010). Although considerable 

evidence exists that inquiry-based instruction positively afects diferent outcome measures including 
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cognitive achievement, conceptual understanding, process skills, critical thinking and attitudes towards 

science (Anderson, 2002; Blanchard et al., 2010; Furtak, Seidel, Iverson, & Briggs, 2012; Haury, 1993; 

Minner, Levy, & Century, 2010; Schroeder, Scott, Tolson, Huang, & Lee, 2007), critics of inquiry-based 

teaching have repeatedly challenged its efcacy (Kirschner, Sweller, & Clark, 2006; Klahr & Nigam, 2004). 

Part of the disagreement may be due to the fact that the term inquiry has taken on diferent meanings 

within the science education literature. Inquiry refers not only to an instructional approach but also to 

curriculum materials, a way for students to learn science and scientifc ways of obtaining knowledge 

(Bybee, 2000; Furtak et al., 2012). Moreover, even when focusing on inquiry as an instructional approach, 

considerable disagreement can be observed among researchers and educators with respect to its def-

nition (Blanchard et al., 2010; Furtak, Shavelson, Shemwell, & Figueroa, 2012; Hmelo-Silver, Duncan, & 

Chinn, 2007), ranging from minimally guided, discovery-oriented approaches in which students engage 

in hands-on activities (e.g. Kirschner et al., 2006) to elaborate lists of actions for the students and their 

teachers (e.g. National Research Council, 1996). In recent years, the situation has become even more 

complicated since the feld of science education in the United States has moved away from using the 

term inquiry and now refers to scientifc practices (National Research Council, 2012). Thus, the termi-

nology used to describe inquiry-based approaches in science teaching and learning is diverse. For the 

purpose of this review, these approaches are mainly subsumed under the term scientifc inquiry to 

facilitate reading. However, when describing specifc studies, the terminology employed in the study 

is used to refect the diversity of the diferent approaches.

Looking at the conceptualisations of scientifc inquiry found in the literature, two main dimen-

sions of inquiry-based teaching can be distinguished: the type and range of activities that students 

engage in (e.g. Abd El Khalick et al., 2004; National Research Council, 2000) and the degree of guidance 

provided by the teacher (e.g. Furtak et al., 2012). Empirical studies investigating the efectiveness of 

scientifc inquiry may vary considerably along these two dimensions. This is especially crucial for the 

validity of meta-analyses that attempt to synthesise the causal inferences made by individual studies. 

In a recent meta-analysis, Furtak et al. (2012) argue that ‘insufcient attention has been given to the 

operationalization of the inquiry construct in the case of prior meta-analyses of inquiry-based teaching 

and that this has masked important diferences in the efcacy of distinct features of this instructional 

approach’ (p. 304). In their analysis, the authors introduced a framework for inquiry-based teaching 

that distinguished between cognitive features of the activity (i.e. procedural, epistemic, conceptual 

and social) and the degree of guidance given by the teacher. The cognitive features are described by 

specifc activities that students conduct when they engage in scientifc inquiry like, e.g. asking scientif-

ically oriented questions (procedural), drawing conclusions based on evidence (epistemic) and arguing 

scientifc ideas (social). Overall, the authors found a medium mean efect size; however, a considerable 

variability among efect sizes was observed when they were considered as a function of the cognitive 

and guidance dimensions of inquiry. The most positive efects were observed for activities related to 

the epistemic or a combination of the procedural, epistemic and social domains of inquiry; with respect 

to the guidance dimension, the results suggested that teacher-led inquiry lessons have a greater efect 

on student learning than those that are student led.

Earlier meta-analyses mostly relied on expansive defnitions of inquiry-based teaching, often, how-

ever, without systematically addressing the diferences in the conceptualisations of this instructional 

approach. Here, small to medium mean efect sizes were reported (Furtak et al., 2012). A similar medium 

mean efect was found in a meta-analysis by Schroeder et al. (2007) who defned inquiry teaching 

strategies quite generally as student-centred strategies requiring students to answer scientifc research 

questions by analysing data.

Background and objectives of the review

In their meta-analysis of experimental and quasi-experimental studies of inquiry-based science teaching, 

Furtak et al. (2012) argued that ‘coding inquiry as a dichotomy, as opposed to existing on a spectrum, 

fails to capture the range of activities and thinking processes in which students might be engaged’ 
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(p. 304). They addressed this issue by categorising the studies according to the cognitive features of 

the inquiry activities. This implies, however, that these activities are defned and operationalised in a 

similar way across studies – which may not always be the case. In a study by Chen and Klar (1999), e.g. 

‘students designed and evaluated experiments and made inferences from the experimental outcomes’ 

(p. 1098); McElhany and Linn (2011) similarly asked students ‘to design informative experiments’ and 

‘to explain the mechanisms’ of a specifc phenomenon (p. 746). Students in the former study, however, 

conducted hands-on experiments with real equipment while students in the latter study worked in 

a virtual experimentation environment. Following the argument by Furtak et al. (2012), as described 

above, it seems necessary to not focus solely on inquiry as a global concept, but on the diferent activ-

ities of the inquiry process in which students engage. The review thus aims to answer the question 

how coherently these activities have been defned and operationalised in empirical studies within the 

broader context of scientifc inquiry.

In order to do so, a framework for inquiry-based teaching and learning in science is used that concep-

tualises scientifc inquiry as a process consisting of activities that students conduct and the underlying 

competences that these activities require, respectively (e.g. Bell, Urhahne, Schanze, & Ploetzner, 2010; 

Linn, Davis, & Bell, 2004; National Research Council, 1996, 2000, 2012; Pedaste et al., 2015). Despite the 

widespread use of this approach in the science education literature, however, research varies consid-

erably with respect to both the activities that are regarded as central to the process of scientifc inquiry 

and especially the terminology that is used to label those activities (Abd El Khalick et al., 2004; Pedaste 

et al., 2015).

One of the most prominent lists of activities stems from the publications of the National Research 

Council. The framework for K-12 science education (National Research Council, 2012) lists eight sci-

entifc practices: 1. Asking questions, 2. Developing and using models, 3. Planning and carrying out 

investigations, 4. Analysing and interpreting data, 5. Using mathematics and computational thinking, 

6. Constructing explanations, 7. Engaging in argument from evidence and 8. Obtaining, evaluating and 

communicating information. It is explicitly stressed that the eight practices are not separate but that 

they intentionally overlap and interconnect.

Other well-known models in the feld distinguish specifc phases in the inquiry process. Examples 

are, e.g. the 5E learning cycle model (Bybee et al., 2006) that lists fve inquiry phases (engagement, 

exploration, explanation, elaboration and evaluation) and the inquiry cycle proposed by White and 

Frederiksen (1998) that also identifes fve phases but labels them as question, predict, experiment, 

model and apply. In a study analysing models, tools and challenges of collaborative inquiry learning, 

Bell, Urhahne, Schanze and Ploetzner (2010) compared the specifcations used in prominent models 

of inquiry learning with the aim of fnding commonalities. They came up with nine categories of main 

inquiry activities (labelled as processes): orienting and asking questions, hypotheses generation, plan-

ning, investigation, analysis and interpretation, model, conclusion and evaluation, communication and 

prediction. In a recent review, Pedaste et al. (2015) tried to further systematise the various terminologies 

used to describe the activities of the inquiry process in order to develop a synthesised inquiry cycle. They 

distinguished fve general phases of which three are divided into sub-phases: orientation, conceptualis-

ation (divided into the sub-phases questioning and hypothesis generation), investigation (divided into 

the sub-phases exploration, experimentation and interpretation), conclusion and discussion (divided 

into the sub-phases refection and communication). The latter two studies stress that the inquiry process 

does not imply a fxed chronological order of the diferent activities but that there are multiple possible 

pathways including sub-cycles and repetitions; moreover, in both models, communication is regarded 

as an overarching ability that is important for all steps of the process.

The model used in the analyses presented in this review is a synthesis of existing activity-based 

conceptualisations of scientifc inquiry in the literature (Abd El Khalick et al., 2004; Bell et al., 2010; 

Bybee et al., 2006; Linn et al., 2004; Mullis, Martin, Ruddock, O’Sullivan, & Preuschof, 2009; National 

Research Council, 1996, 2000, 2012; Pedaste et al., 2015; White & Frederiksen, 1998). It distinguishes 

nine activities: 1. Identifying questions, 2. Searching for information, 3. Formulating hypotheses and 

generating predictions, 4. Planning, designing and carrying out investigations, 5. Analysing, interpreting 
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and evaluating data, 6. Developing explanations, 7. Constructing models, 8. Engaging in argumentation 

and reasoning and 9. Communicating. In line with earlier models, no fxed chronological order is implied 

and the activities might overlap and interconnect.

Some of these inquiry activities have evolved as research felds of their own during the last dec-

ades, resulting in dedicated reviews. Reviews of research in modelling and argumentation provide some 

evidence that the variation observed in the defnitions of scientifc inquiry can also be found at the 

level of distinctive inquiry activities (Cavagnetto, 2010; Jiménez-Aleixandre & Erduran, 2007; Nicolaou 

& Constantinou, 2014). In a recent review of the assessment of modelling competence, Nicolaou and 

Constantinou (2014), e.g. found that studies usually address only parts of what can be conceptualised as 

modelling competence and often diferent defnitions are used even when focusing on a common aspect. 

In the feld of argumentation, Jiménez-Aleixandre and Erduran (2007) reviewed meanings of argument 

and argumentation in the literature. According to their review, diferent understandings of argument as 

well as argumentation exist. Whereas some authors agree that argument has both an individual (referring 

to any piece of reasoned discourse) and a social (referring to a dispute or debate between people) mean-

ing, others restrict argument to the social meaning. With respect to scientifc argumentation, again, two 

diferent viewpoints exist: argumentation as knowledge justifcation and argumentation as persuasion. 

Whereas the former is defned as the process of connecting claims and evidence through justifcation, the 

latter is related to the process of convincing an audience. This discussion is closely related to the question 

whether or not one should distinguish argumentation and explanation. Osborne and Patterson (2011) 

argue for the importance of this distinction because explanation and argumentation have diferent goals: 

‘Explanations and the construction of explanations are essential to the creation of new knowledge. The 

pedagogic value of argumentation, however, lies in its value for exploring the justifcation of belief and 

promoting a dialectic between construction and critique’ (p. 636). Other authors, however, confate the 

two constructs by mixing elements of arguments and explanations (e.g. McNeill & Krajcik, 2008). In his 

review of argument interventions in the context of scientifc literacy, Cavagnetto (2010) found that the 

interventions varied with respect to the nature and purpose of the activity and the aspects of science 

included in it. The learning of argument is approached using three strategies: immersion in practice, 

explicit instruction in the structure of argument and emphasis of the interaction of science and society. 

In immersion-oriented interventions, argument constitutes an integral part of investigations; it is not con-

sidered as something that concludes an investigation but is present throughout the process as students 

identify questions, carry out experiments, interpret data and defend evidence-based knowledge claims. 

On the contrary, structure-oriented interventions focus on explanatory activities and separate argument 

and investigations; argument is thus considered more a product of investigations than an enmeshed 

component. Science-and-society-oriented interventions eventually use socio-scientifc issues to contex-

tualise argument (Cavagnetto, 2010). These results from the felds of argumentation and modelling show 

that the defnitions and operationalisations of these inquiry activities vary considerably across studies. 

To our knowledge, no reviews for the other inquiry activities exist which address this issue of diversity 

in defnitions, conceptions and/or operationalisations. The purpose of the present article is thus to take 

a frst step towards closing this gap by providing insight into the range and spectrum of defnitions and 

operationalisations related to activities of the inquiry process that have been used in empirical studies 

within the feld of scientifc inquiry.

Instead of looking at scientifc inquiry from a holistic perspective, this review thus takes a rather 

atomistic approach (see Figure 1). It analyses the operationalisations of the diferent inquiry activities 

in empirical studies with respect to three major aspects: (1) How are the activities defned? (2) How 

are the activities implemented in the learning environment or intervention? and (3) How are students’ 

competences with respect to these activities assessed? In other words, the analysis intends to extract 

from the reviewed empirical studies the operationalisations of the diferent inquiry activities as they 

become manifest in the theoretical considerations of the authors (i.e. their defnitions), in the imple-

mentation of the activities in form of instructional or interventional components of the study and/or 

in the focus of an assessment of student performance related to the activities.
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Using such an atomistic approach is based on the assumption that understanding the diferent 

parts is a prerequisite for better understanding the whole, acknowledging, however, that the whole is 

certainly more than the sum of its parts. If we want to arrive at a more uniform, coherent and holistic 

understanding of scientifc inquiry though, we frst need to understand the diferent activities that 

are commonly considered to be the basis of this concept (Bell et al., 2010; Linn et al., 2004; National 

Research Council, 1996, 2000, 2012; Pedaste et al., 2015).

Method

One of the main challenges for a literature review is to ensure that as few as possible relevant publi-

cations are missed in the literature search. This is especially true if the research feld is as diverse as in 

the case of scientifc inquiry where a rich vocabulary exists to describe inquiry-related approaches in 

instruction, including, e.g. scientifc inquiry, inquiry-based teaching and learning, authentic inquiry, 

project-based science, modelling and argumentation, hands-on science and constructivist science 

(Furtak et al., 2012). One strategy to address this challenge is to apply search criteria that are as broad 

and comprehensive as possible. The underlying idea is to generate an initial literature database that 

in case of doubt includes publications that are not related to the objectives of the review rather than 

risking missing important contributions to the feld of interest. At the same time, however, the result-

ing initial number of publications must still be reasonable and manageable for further analysis with 

regard to inclusion and exclusion criteria. In the case of this review, diferent search strategies were 

pursued – namely searching in relevant databases, in relevant journals and in the reference lists of 

relevant publications found using the frst two strategies – and by carefully selecting the keywords to 

be used in the database searches.

Figure 1. Analysing the construct scientific inquiry on different levels in this review.
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For the choice of keywords, we frst analysed previous reviews in the feld of scientifc inquiry with 

respect to the keywords they had used (e.g. Furtak et al., 2012; Heinz, Lipowsky, Gröschner, & Seidel, 

2012). Second, trial searches were conducted with diferent combinations of these keywords that varied 

with respect to their spectrum, i.e. the extent to which they included alternative teaching and learning 

approaches that are related to scientifc inquiry. The aim of these trials was to fnd a reasonable com-

promise between comprehensiveness, on the one hand, and size of the initial literature database for 

further analysis, on the other. Two library databases, Web of Science and ERIC, were searched to provide 

this initial database. The search was restricted to publications that (a) were published before 1 April 2013 

and after 1 April 1998 and (b) were written in English. The following keywords were fnally chosen for 

describing the approach of scientifc inquiry: inquiry, collaborative learning, discovery learning, coop-

erative learning, constructivist teaching, problem-based learning and argumentation. Since the focus 

of this review is on empirical research in scientifc inquiry from K-12, these keywords were crossed with 

the following keywords representing the area of evaluation and assessment: assessment, evaluation, 

validation, achievement or feedback and discourse, efective questioning, assessment conversations, 

accountable talk, quizzes, self-assessment, peer assessment, portfolio, learn log, mind map, concept map, 

rubrics, science notebook, multiple-choice, constructed response or open-ended response. Additional 

keywords were used to further limit the selection to the subject of science at the school level. After 

eliminating duplicates, the search led to a sample of N = 331 publications (see Figure 2). In a second 

step, those journals that appeared to produce the greatest number of articles in the database searches 

(Journal of Research in Science Teaching and Science Education) were specifcally examined to ensure 

that all the relevant literature they ofered is included in the literature database for this review. Since the 

review has a special focus on empirical research, three journals from the feld of educational assessment 

(Applied Measurement in Education, Assessment in Education and Educational Assessment) were also 

included in this second step. Eventually, the reference lists of selected articles were searched for relevant 

articles not already in the database.

Combining these three steps led to an initial literature database of N  =  459 publications. These 

studies were then further analysed by reading abstracts and, if necessary, full texts with respect to the 

following inclusion criteria: (a) studies are based on empirical data, (b) are related to scientifc inquiry, 

(c) are situated at the school level, i.e. in kindergarten, primary, lower or upper secondary level, and 

(d) were published in a peer-reviewed journal. There were several reasons for the focus on journal 

articles, the most important being the peer review process since this provides some check of quality 

of the presented research. Moreover, journal articles are the type of literature best accessible using 

systematic searching procedures. Applying these criteria led to a fnal database of N = 96 publications 

(the complete search and selection process is depicted in Figure 2).

These N = 96 publications were then read by the authors and analysed with respect to general infor-

mation about the studies (e.g. year of publication, country, type of study and sample characteristics) and 

the activities of the inquiry process that they addressed either as part of the learning environment (e.g. 

curriculum or instructional unit) or as part of the assessment employed in the study. Most studies in the 

review emphasise particular inquiry activities. However, 15 studies have a more general focus on the 

efects of implementing inquiry in K-12 classrooms, in particular the impact of diferent inquiry-oriented 

curricula or instructional approaches. The output measures in these studies difer between students’ 

content knowledge and conceptual understanding, views on the nature of science, attitudes, interest 

and motivation. Although these studies are relevant for this review from the perspective that they are 

integrated in an inquiry-oriented theoretical background, they often provide only few details about the 

implementation of inquiry activities in their designs. The information about students’ activities is often 

rather general like, e.g. ‘students use inquiry-based curricula and an internet software programme to 

study general weather topics such as wind, precipitation, temperature and pressure, and clouds and 

humidity collaboratively with students and professional scientists’ (Mistler Jackson & Songer, 2000, 

p. 464). This is not to criticise these studies or publications, but details about the implementation of 

scientifc inquiry in the classroom or learning environment are a condition precedent to this review. 

Hence, these 15 studies were excluded from the subsequent presentation of results. The fnal database 
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thus consisted of N = 81 publications. A complete list of all publications analysed in this review with 

descriptive information about the studies can be found in the online supplementary material.

Analysis

This review intends to provide insights into the range and spectrum of defnitions and operationalisa-

tions used with regard to single activities of the inquiry process in the diferent studies. The results of 

the analysis are presented in nine sections related to nine inquiry activities, acknowledging, however, 

that there is not always a sharp distinction and that in practice, these activities are often very closely 

related (National Research Council, 2013). In each section, information is provided with respect to the 

theoretical background as well as the operationalisation – both with respect to the implementation 

of the activity in the learning environment and the assessment of students’ competences related to a 

specifc activity.

Figure 2. Schematic representation of the literature search and selection process.
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Identifying research questions

For the analyses within this review, the activity of identifying research questions was distinguished 

from the more general and content- (or comprehension-) related activities of questioning (e.g. Chin & 

Osborne, 2010) and question-posing (e.g. Kaberman & Dori, 2009). Questioning requires students to 

‘engage with their current understanding, probe into alternative ways of explaining phenomena, and 

ask why certain explanations are better than others’ (Chin & Osborne, 2010, p. 886). Aguiar, Mortimer 

and Scott (2010) call this kind of questions wonderment questions because they ‘require integration of 

complex and divergent information from various sources, and refect curiosity, puzzlement, scepticism 

or speculation’ (p. 175).

The focus of this review, however, is on the identifcation of research questions. Twelve publications 

address this issue, but details concerning this construct are provided in only nine of them (see Figure 3). 

An explicit defnition of a research question is only given in the study by White and Frederiksen (1998) 

where students should formulate ‘a well-formed, investigable research question whose pursuit will 

advance their understanding of a topic they are curious about’ (p. 10). Other studies mainly focus on 

one of the two characteristics, respectively, the need for research questions to be testable (Chang et al., 

2011; Ebenezer, Kaya, & Ebenezer, 2011) or their potential to advance understanding (Cavagnetto, Hand, 

& Norton-Meier, 2010). A third characteristic is eventually addressed in a study by Samarapungavan, 

Patrick and Mantzicopoulos (2011) who focus on students’ ability to use science concepts in the gen-

eration of scientifc research questions.

A specifc focus on the identifcation of research questions is found in a study by Hofstein, Navon, 

Kipnis and Mamlok-Naaman (2005). They investigated the efects of inquiry-type laboratory activities on 

students’ ability to ask more and better questions and to choose research questions for further research. 

The results showed that students improved their ability to ask better and more relevant questions as a 

result of gaining experience with the inquiry-type experiments. Additional studies assessed the ability 

Figure 3. Distribution of studies focusing on specific inquiry activities and providing conceptual details of this activity. The larger 
bars (light grey) indicate the ratio of studies addressing a specific activity in relation to the total number of studies reviewed (n = 81). 
The dark grey bars indicate the portion of studies providing conceptual details within each activity category. The annotation above 
each pair of bars provides the absolute numbers for this comparison, giving the number of studies providing conceptual details and 
the total number of studies for each activity category, e.g. 12 studies focused on the inquiry activity of identifying questions and 9 
out of these 12 studies provided conceptual details about this activity.
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to identify research questions as part of students’ inquiry abilities, mostly with respect to interventions 

fostering these abilities. Ebenezer et al. (2011), e.g. analysed the efects of participating in long-term 

scientifc research projects on inquiry abilities using rubrics consisting of 11 criteria to assess students’ 

project reports. Their analyses showed that students reached the highest profciency values with respect 

to those two criteria that were related to the formulation of research questions. In a similar way, So 

(2003) included students’ ability to judge primary students’ research reports in a survey study. In two 

studies by Samarapungavan, Mantzicopoulos, and Patrick (2008) and Samarapungavan et al. (2011), 

dealing with the learning of science through inquiry in kindergarten, an electronic portfolio system was 

used to collect and evaluate evidence of children’s learning through classroom inquiry activities. The 

portfolios contained two types of data, student artefacts (e.g. records in science notebooks or posters) 

and digital videos and transcriptions of the intervention activities. One criterion for the portfolio analysis 

was the raising of research questions and predictions (Samarapungavan et al., 2011). Results showed 

that the inquiry intervention led to signifcant improvements with respect to children’s ability to raise 

research questions and predictions. Finally, students’ ability to formulate research questions was included 

as one facet of inquiry competence in a self-report questionnaire that was evaluated in a study by  

Chang et al. (2011).

In summary, all studies focus on students’ ability to identify or raise research questions, mainly by 

means of open-ended formats or portfolios. To evaluate the quality of these questions, diferent char-

acteristics are used, e.g. the need for research questions to be testable (Chang et al., 2011; Ebenezer 

et al., 2011), their potential to advance understanding (Cavagnetto et al., 2010) or the application of 

science concepts in the generation of research questions (Samarapungavan et al., 2011). However, no 

study focuses on the question how the assessment format impacts the evaluation of students’ abilities 

to identify and raise research questions and whether there is a preferable format when focusing on 

specifc aspects of this activity. Few studies address fostering students’ abilities in identifying research 

questions. Moreover, these studies focus entirely on an immersion approach of participating in inquiry-

type laboratory activities or research-like projects. Hence, apart from repeated practice, little is known 

about instructional activities to develop students’ ability to identify research questions, in general, as 

well as with regard to the diferent characteristics of this inquiry activity.

Searching for information

A focus on searching for information is often related to ill-structured, real-life problems in collaborative 

learning environments like, e.g. project-based science (Butler & Lumpe, 2008; So, 2003), problem-based 

learning or problem-solving activities in general (e.g. Belland, Glazewski, & Richardson, 2011; Chiou, 

Hwang, & Tseng, 2009; Simons & Klein, 2007; Toth, Suthers, & Lesgold, 2002; Tsai, Hwang, Tsai, Hung, & 

Huang, 2012; Wong & Day, 2009) and computer-based virtual collaborative environments (e.g. Ketelhut 

& Nelson, 2010; Taasoobshirazi, Zuiker, Anderson, & Hickey, 2006). Eleven studies in this review inves-

tigate and provide further details about this inquiry activity (see Figure 3). Searching for information 

is mostly addressed as one activity – among others – that contributes to a problem-solving or inquiry 

process. Students are required to search diferent sources for information that may help them solve 

the problem at hand (e.g. Taasoobshirazi et al., 2006). Common sources are digital libraries (Butler & 

Lumpe, 2008; Tsai et al., 2012), links to relevant websites (Simons & Klein, 2007), school libraries (Wong 

& Day, 2009) and interactions with virtual characters like, e.g. computerised residents in multi-user 

virtual environments (Ketelhut & Nelson, 2010; Spires, Rowe, Mott, & Lester, 2011).

There are, however, also studies that place specifc emphasis on the search process and the under-

lying strategies. Here, two lines of research can be identifed. The frst line is related to scafolding 

which should help students determine what information is needed, how to fnd this information and 

how to organise it (Belland et al., 2011; Butler & Lumpe, 2008; Simons & Klein, 2007). Butler and Lumpe 

(2008), e.g. analysed the use and efects of computer scafolds. In a project-based science unit, search-

ing features (i.e. how often do students perform a search, use the dictionary, use the thesaurus, read 

the website description or view the actual website) were investigated as one of the fve scafolding 



170  S. RÖNNEBECK ET AL.

categories to result in a descriptive statistic of scafold use. The authors found that students used the 

searching features more than half of the time and more often than any other scafolding category. 

Moreover, a signifcant correlation between the use of the searching features and the student scores 

for self-efcacy for learning and performance was observed.

The second line of research is related to the computer-assisted analysis of students’ search behaviour 

and their underlying problem-solving abilities (Chiou et al., 2009; Toth et al., 2002; Tsai et al., 2012). Toth 

et al. (2002), e.g. focused on the selection and evaluation of evidence from multiple sources. Students 

had to search hypertext-based, simplifed research papers for hypotheses and data and establish links 

between them. The resulting information search measure was based on the number of topic-relevant 

pieces of information that had been recorded and how many of these had been labelled as data and 

hypotheses. The study compared two technology-based knowledge representation tools, evidence 

mapping and prose writing. The authors found that the mean number of labelled information pieces 

was signifcantly higher in the mapping groups than in the prose groups. The diference between 

treatment conditions was attributed not to students’ ability to categorise information into hypotheses 

and data, but to their explicit recognition of the necessity to do so. An automatic scoring mechanism 

to assist teachers in evaluating the web-based information-searching and problem-solving ability of 

individual students was developed and evaluated by Chiou et al. (2009). Their analysis of students’ 

information-searching behaviour was based on the Big6 model: task defnition, information-seeking 

strategies, location and access, use of information, synthesis and evaluation. A correlation analysis 

resulted in large positive correlations between teacher and automatic scores for all indicators except 

information-seeking strategies.

In essence, the diferent studies focus either on the information or the search aspect of this inquiry 

activity. When focusing on the information aspect, students’ ability is often evaluated with regard to 

the degree to which the collected information contributes to the problem-solving or inquiry process. 

Other studies are interested either in investigating students’ search behaviour (e.g. by log fles of com-

puter-based learning environments) or in identifying means to scafold and support students’ search 

process (e.g. by providing strategies to select, process and organise the contextually relevant information). 

Both lines of research often make use of ill-structured problems, collaborative learning environments 

and multiple resources (digital or traditional libraries, web quests, etc.) and focus mainly on describing 

the students’ search behaviour, while only little emphasis can be found with regard to the assessment 

of this activity (cf. Toth et al., 2002).

Formulating hypotheses and generating predictions

In total, students’ ability to formulate hypotheses or generate predictions is explicitly addressed in 25 

publications. Despite this large number of studies, only 13 studies disentangle this aspect of inquiry in 

detail (see Figure 3). In the other 12 studies, the formulation of hypotheses is mentioned as an impor-

tant aspect of inquiry, but little detail is given about its function and operationalisation in the learning 

environment or the assessment.

Regarding the defnition, hypotheses are seen as the relation between input and output variables 

(Gijlers & de Jong, 2005). The main purpose of formulating hypotheses is often stated as to allow stu-

dents ‘to learn and experience science with greater understanding and to practice their metacognitive 

abilities’ and to provide them ‘with the opportunity to construct their knowledge by actually doing 

scientifc work’ (Hofstein et al., 2005, p. 795). However, within the reviewed studies, students’ perspec-

tive on the function of generating hypotheses is seldom addressed. Herrenkohl, Palincsar, DeWater 

and Kawasaki (1999) asked students about the function of formulating this kind of predictions, but 

the coding of students’ answers was limited to decide whether these answers were at least at the level 

of guess or educated guess.

Diferent formats are used to assess students’ ability to formulate hypotheses or generate predictions. 

These range from closed multiple-choice formats (Gobert, Pallant, & Daniels, 2010) to open-ended items 

(Furtak & Ruiz-Primo, 2008), students’ discourse (Gijlers & de Jong, 2005) and are part of conducting 
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hands-on (Hofstein et al., 2005), computer-based (Ketelhut & Nelson, 2010) or thought experiments 

(Herrenkohl, Tasker, & White, 2011).

Studies varied according to the evaluation of the quality of students’ hypotheses. If details were 

provided, most studies diferentiated between hypotheses that are testable (i.e. correct hypotheses) 

and those that are not. With regard to students’ ability in formulating a testable hypothesis, Ebenezer  

et al. (2011) expect students to ‘be able to state a hypothesis that lends itself to testing. Also, the hypoth-

esis should be accompanied by coherent explanation(s)’ (p. 103). A detailed taxonomy is provided by 

Kaberman and Dori (2009) who diferentiated content (whether only the phenomenon at hand or a 

more general level was addressed), thinking level (according to Bloom’s taxonomy) and chemistry 

understanding levels (macroscopic, microscopic, symbolic and process levels). Findings suggest that 

both the number and the complexity of students’ hypotheses increased due to an intervention based 

on this framework (Kaberman & Dori, 2009).

Several interventions have been suggested to promote students’ ability in formulating  hypotheses. 

Spires et al. (2011) used a gameplay approach that required solving a science mystery based on micro-

biology content: ‘Results indicated that the efective exploration and navigation of the hypothesis 

space […] was predictive of student learning’ (Spires et al., 2011, p. 453). Using constructed response 

items, Lavoie (1999) examined the efects of adding a prediction or discussion phase where students 

individually wrote out predictions with explanatory hypotheses at the beginning of a learning cycle. 

By introducing this phase, the author intended to prompt students to construct and deconstruct their 

procedural and declarative knowledge. The evaluation of this intervention revealed signifcant gains 

with respect to process and logical thinking skills, the understanding of scientifc concepts and students’ 

attitudes towards science.

Kyza (2009) examined students’ inquiry practices in considering alternative hypotheses. She analysed 

students’ discourse, actions, inquiry products and interactions with their teachers and peers. Despite 

signifcant learning gains when implementing a supportive learning environment (i.e. teacher- and 

task-based scafolding), the author pointed out several epistemological problems related to students’ 

perception of the usefulness of examining and communicating alternative explanations, i.e. by relying 

primarily on a verifcation strategy of hypothesis testing. Her fndings indicate the importance of episte-

mologically targeted discourse alongside guided inquiry experiences for overcoming these challenges.

Throughout the reviewed studies, formulating hypotheses is regarded as a core feature of scientifc 

inquiry and as highly important to learn and experience science with greater understanding (cf. Hofstein 

et al., 2005). As mentioned above, however, few details about the function and operationalisation of 

formulating hypotheses in the learning process are provided. In addition, students’ perspectives on 

the function of generating hypotheses and the infuence of their perception on the whole inquiry 

process are barely addressed. Kyza (2009) pointed out that students tend to rely primarily on a veri-

fcation strategy of hypothesis testing, indicating epistemological constraints in students’ perception 

and interpretation of the role of hypotheses (and also alternative hypotheses) in the inquiry process.

Across the studies, a large range of diferent formats is used to assess students’ abilities to formu-

late hypotheses (e.g. multiple choice, students’ discourse or thought experiments). However, in most 

cases, the evaluation is restricted to the decision whether the proposed hypothesis is testable or not. 

Likewise, approaches to promote students’ ability in formulating hypotheses are predominantly based 

on repeated practice while more detailed and focused instructional approaches (e.g. Kaberman & Dori, 

2009) are hard to fnd.

Planning, designing and carrying out investigations

In total, 21 publications addressed the activity of planning, designing and carrying out investigations 

and again only the minority of papers (n = 7) pointed out details about what was expected from stu-

dents regarding this scientifc practice (see Figure 3). According to Ebenezer et al. (2011), designing and 

conducting scientifc investigations means ‘that students should logically outline methods and proce-

dures, use proper measuring equipment, heed safety precautions, and conduct a sufcient number of 
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repeated trials to validate the results’ (p. 103). Several publications investigated the activity of designing 

an investigation; however, in most cases, students’ approaches were limited by predefned guidelines. 

Few studies were found in which students were unrestricted in deciding about the scope and design 

of their investigation. Thus, instructional decisions concerning the implementation of this activity seem 

to almost automatically entail aspects of scafolding and guidance.

Chen and Klahr (1999) predominantly focused on the control of variables strategy and how students 

can be supported to generalise this processing strategy across various contexts. They asked children 

in primary school to design and evaluate experiments and to make inferences from the experiment 

outcomes:

When provided with explicit training within domains, combined with probe questions, children were able to learn 
and transfer the basic strategy for designing unconfounded experiments. Providing probes without direct instruc-
tion, however, did not improve children’s ability to design unconfounded experiments and make valid inferences. 
(Chen & Klahr, 1999, p. 1098)

According to the authors, the ability to transfer learned strategies to remote situations seems to increase 

with age.

Two other activities were present in the diferent publications next to designing an investigation: 

either students were asked to manipulate variables in a given experimental set-up (e.g. in a comput-

er-based simulation environment; Valanides & Angeli, 2008) or they were asked to interpret an inves-

tigation designed by others. For instance, Zion, Michalsky and Mevarech (2005) confronted students 

with a phenomenon, fndings collected by scientists that described the phenomenon and the experi-

ments designed by scientists for solving the problem: ‘Students were required to identify the relevant 

variables, interpret the results of the given experiment and draw valid conclusions on the basis of the 

given data’ (Zion et al., 2005, p. 967).

In addition to the activities students were asked to perform, the reviewed publications also difered 

according to the mode in which students realised the planning of their investigations. Three major 

specifcations could be identifed: hands-on, virtual and theoretical. Hands-on experiments account for 

the majority of publications (e.g. Chen & Klahr, 1999; Dori, 2003). In most cases, students were provided 

with technical equipment and are responsible for designing, setting up and conducting the experiment. 

Other studies used surrogates to the technical, hands-on realisation of scientifc experiments by using 

computer-based systems. For example, McElhaney and Linn (2011) developed a computer simulation in 

which students conducted experiments to answer diferent questions. The questions could be selected 

from a drop down menu or students could choose an alternative such as just exploring. While students 

conducted their experiments, the software logged the question and the variable values that the students 

selected for each trial. The question students chose was used to infer their aims in each trial. The third 

group of publications included a theoretical approach to designing an experiment, i.e. students were 

asked to outline an experiment in written form, mainly as part of assessing students’ inquiry abilities. 

For instance, Yoon (2009) used the Diet Cola Test which requires students to specify a research question 

related to a given situation and to design an experiment to fnd the answer. In this approach, students’ 

ability to design an experiment is often treated as an isolated step, i.e. subsequent steps of data analysis 

and interpretation are unrelated to the students’ experimental design in this specifc step.

Irrespective of the mode of investigation, students were confronted with diferent degrees of open-

ness in the diferent studies or, as mentioned above, with diferent levels of scafolding and guidance. 

In the case of hands-on experiments, often, the kind and amount of technical apparatuses were pre-

selected either to guide the students or to prevent danger. Also some virtual set-ups allowed students 

‘not only [to] design the hypothesis, but also the procedure and data-collection methodology’ (Ketelhut 

& Nelson, 2010), while other systems were more restricted so that students’ design of experiments 

was limited to, e.g. manipulating ‘values of input variables, and [observing] the behaviour of output 

variables’ (Gijlers & de Jong, 2005). Regarding diferences between the diferent modes and degrees of 

openness, Stecher et al. (2000) investigated whether the content domain, the format (paper and pencil 

vs. hands-on) and the level of inquiry (whether the task guided the student or required the develop-

ment of a solution strategy) had an impact on students’ performance. The authors used a shell design 
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to develop six similar investigations of acids, controlling for format and level of inquiry. However, ‘post 

hoc analyses of the tasks revealed unanticipated diferences in developers’ interpretation of the shell 

that may have afected student performance’ (Stecher et al., 2000, p. 140). The authors concluded that 

comparing students’ performance across the diferent modes and levels of inquiry seems more dif-

cult than expected as students’ performance within each mode and level also varies to a large extent.

Only two publications were identifed that tried to assess students’ ability in designing an experi-

ment via a multiple-choice test. Gijlers and de Jong (2005) used ten multiple-choice items to examine

students’ performance in the areas of planning and conducting an investigation. Items in this section of the test 
aimed at the identifcation of relevant variables, the design of an experiment, the ability to state a hypothesis, and 
identifcation of data that support a hypothesis. (p. 271)

Chang et al. (2011) focused on students’ self-evaluation of their ability to design and conduct exper-

iments. The authors asked students whether they considered themselves able to ‘adopt a suitable 

strategy for specifc questions or hypotheses, employ resources, and then work out a problem-solv-

ing approach’ (Chang et al., 2011, p. 1220). The authors reported high latent correlations to students’ 

self-reported abilities of formulating a hypothesis and analysing data but only a medium correlation 

to conducting an experiment (Chang et al., 2011).

Regarding possibilities to foster students’ abilities in designing and conducting experiments, White 

and Frederiksen (1998) investigated the efect of refective assessment on inquiry units. Overall stu-

dents’ performance improved signifcantly and a controlled comparison revealed that students’ learning 

was greatly facilitated by refective assessment. Interestingly, adding this metacognitive process to 

the curriculum was particularly benefcial for low-achieving students: performance in their research 

projects and inquiry tests was signifcantly closer to that of high-achieving students than was the case 

in the control classes.

As in the case of studies on students’ ability to formulate hypotheses, only the minority of studies 

reviewed with regard to investigating students’ planning, designing and carrying out of experiments 

provide details about the expected outcome. Three main lines are identifed in these investigations: 

students are asked to design an investigation, to manipulate a given set-up or to interpret a set-up 

designed by others. Within these approaches, diferent modes are used in which students’ ability is 

assessed: hands-on, virtual and theoretical. While designing an experiment is assessed in the full range 

of diferent modes, manipulating a given set-up is mostly investigated in virtual environments and 

interpreting a set-up designed by others mainly in written form. In summary, the impact of both the 

approach and the mode on the obtained results remains difcult to evaluate. Consequently, the degree 

to which results obtained in diferent settings are comparable remains unclear (cf. Stecher et al., 2000).

With regard to fostering students’ ability in this inquiry activity, most studies seem to automatically 

entail aspects of scafolding and guidance, e.g. by providing students with predefned guidelines or 

preselected designs and materials. The degrees of openness and scafolding, however, vary widely.

Analysing, interpreting and evaluating data

The evaluation of results is included in many publications as a step of inquiry but often only as a buz-

zword or by-product of a more general view on inquiry. Hence, few studies aim to describe the steps 

that must be taken to collect data that can be interpreted in a scientifc way. Among the studies included 

in this review, while 29 studies address this scientifc practice, only 12 publications provide details.

According to Chang et al. (2011), students should analyse data and establish evidence, build the link 

between evidence and conclusion and then establish the relationship between evidence and conclusion 

to form a model or explanation through logical thinking. For these steps, appropriate tools, methods 

and procedures are necessary to collect and analyse data systematically, accurately and rigorously. 

In some cases, this can include the use of mathematical tools and statistical software, e.g. to analyse 

and display data in charts or graphs or to test relationships between variables (Ebenezer et al., 2011).
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Studies on students’ ability to analyse and interpret data difer according to the activity students have 

to carry out (conduct their own analysis; evaluate a given analysis or interpretation; and/or self-evalu-

ation of one’s ability) and the mode of realisation (hands-on; virtual; and theoretical). Across all publi-

cations, students are predominantly required to conduct an own, hands-on analysis of self-collected 

data. For instance, Chen and Klahr (1999) asked students to make systematic comparisons to determine 

the efects of diferent variables on a spring. In each task, participants were asked to focus on a single 

outcome that was afected by four diferent variables. For example, the outcome was how far the spring 

stretched as a function of its length, width, wire size and weight (Chen & Klahr, 1999).

In a study conducted by Vellom and Anderson (1999), students learned about mass, volume and 

density by attempting to stack three miscible solutions with difering densities on top of one another. 

After several attempts, students were asked to decide in small groups which of the diferent claims 

students in the class made were trustworthy and which were unreliable, i.e. to decide how to ‘sepa-

rate the data from the noise’ (Vellom & Anderson, 1999, p. 182). In terms of standards for assuring the 

quality of the collected data, replicability, care in experimentation, explicitness about experimental 

procedures and consistency of observed and reported results were pointed out by the students (Vellom 

& Anderson, 1999).

Analysing primary school children’s inquiry approaches, So (2003) recognised that these

children often used daily commodities to measure or collect data, and used other equipment and instruments when 
needed, […] children were able to make sense of their data by using scientifc equipment and empirical observation, 
and to translate these observations into useable data for interpretation, as well as gathering data in an organized 
and logical manner, [… and] it was common to fnd from children’s reports that they were capable of comparing the 
several rounds of data collected and to come to an agreement about the set of data for interpretation. (pp. 187–188)

Toth et al. (2002) identifed patterns in students’ inquiry approaches resembling two diferent strate-

gies with respect to scientifc reasoning. Some students followed a reasoning from hypothesis approach, 

while others started with collecting data following a reasoning from data approach to scientifc reasoning 

(Toth et al., 2002). The authors concluded that diferent scafolds may be needed to support students 

who tend to apply either one of these two approaches.

Several studies in this review used virtual, computer-based systems in their investigations. In the 

context of plate tectonics, Gobert et al. (2010) asked students to create cross sections of the earth’s 

interior at diferent plate boundaries to elaborate on the magnitude, depth, frequency and location of 

earthquakes and to explain how the movements of the plates at each boundary account for patterns 

in each set of earthquake data. Students were also asked to apply their understanding to the reverse 

case, i.e. they were given two tables of earthquake data and were asked to identify the type of boundary 

represented by each table (Gobert et al., 2010).

In their study, Toth et al. (2002) used a design experiment approach to develop an instructional frame-

work that lends itself to authentic scientifc inquiry. A technology-based knowledge representation tool 

enabled students to relate hypotheses to data by constructing so-called evidence maps. Students for-

mulated scientifc statements using diferent shapes for hypotheses and data and indicated the relation 

between these with for (support) and against (refutation) links. Additionally and links could be used 

to conjoin statements. With regard to the evaluation of data in relation to theories, students using the 

evidence map outperformed their counterparts who used prose writing. This efect was even enhanced 

by the use of refective assessment throughout the inquiry process (Toth et al., 2002).

Comparable to the planning and designing of experiments, students’ ability to analyse and interpret 

data is analysed based on diferent activities students have to carry out (conduct an own analysis; evaluate 

a given analysis or interpretation; and/or self-evaluate one’s ability) and diferent modes of realisation 

(hands-on; virtual; and theoretical). Across all publications, students are predominantly required to con-

duct hands-on analyses of self-collected data while the evaluation of a given analysis or the self-evaluation 

of one’s ability is mainly assessed in computer-based or written form. However, again, few studies provide 

details about the steps required to collect data that can be interpreted in a scientifc way. Regarding the 

evaluation of students’ ability to analyse and interpret data, students’ controlling of variables and the 

systematics of comparisons between cases are the main features. On a more epistemological level, Vellom 
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and Anderson (1999) asked students about standards to assure the quality of the data collection and 

analysis. These aspects of standards and good scientifc practice are not addressed in any other study 

included in this review.

With the aim to foster students’ ability to analyse and interpret data, most approaches focus on means 

to support students in incorporating contextually relevant theories or students’ hypotheses into the 

process of analysing and interpreting the data, i.e. in linking back the analysis to previous steps in the 

inquiry process. Here, the use of evidence maps and refective assessment has proven fruitful (Toth et al., 

2002). However, students in the diferent studies are rarely confronted with conficting evidence or with 

complex methods in the data analysis, indicating that the outcome space of experiments or provided 

data-sets is mainly controlled to focus on clean, clear-cut and well-structured results.

Developing explanations

The construction of evidence-based explanations is addressed in 36 publications in this review – how-

ever, only 18 of them further elaborate on the activity. Approximately half of these 18 studies address 

the development of explanations in the general context of scientifc argumentation, emphasising the 

close relationship between explanation and argumentation (McNeill, 2009). The most detailed defnition 

of a scientifc explanation is given by Gotwals and Songer (2010):

We defne a scientifc explanation as a response to a scientifc question that takes the form of a rhetorical argu-
ment and consists of three main parts: a claim (a statement that establishes the proposed answer to the question), 
evidence (data or observations that support the claim), and reasoning (the scientifc principle that links the data 
to the claim and makes the reason visible why the evidence supports the claim). In short, a scientifc explanation 
is a compilation of evidence elicited through observation and investigation and the explicit links those data have 
to related scientifc knowledge. (p. 263)

This defnition is closely related to the argumentation model by Toulmin (1958). References to this model 

can also be found in Cavagnetto et al. (2010) and Sampson, Grooms and Walker (2011). Whereas the 

former consider explanations as part of rebuttals, the latter regard them as one form of a claim (next 

to conclusions, conjectures or other answers to research questions). More content-oriented defnitions 

understand explanations as a reference ‘to how or why something happens’ (McNeill, 2009, p. 235), as a 

form of schematic knowledge and kinds of mental models (Furtak & Ruiz-Primo, 2008) or as one aspect 

of constructing understanding (Wilson, Taylor, Kowalski, & Carlson, 2010). In the vast majority of pub-

lications, however, no explicit defnition of an explanation is given and it is often not clearly separated 

from related activities like, e.g. drawing conclusions (Gobert et al., 2010).

Next to argumentation, developing explanations is also related to the construction and use of 

 models. In general, models are regarded as support structures that allow students to develop expla-

nations for phenomena, either by activating schematic knowledge (Furtak & Ruiz-Primo, 2008) or by 

providing ‘a set of representations, rules, and reasoning structures’ (Schwarz & White, 2005, p. 166). This 

relation is used by Wilson et al. (2010) who measured students’ ability to reason with scientifc models 

through constructed response items in which students were asked to explain or predict patterns in 

novel situations. Other studies consider explanations and models as alternative explanatory structures 

for phenomena, both of which are based on evidence (Ebenezer et al., 2011; Sampson et al., 2011).

The publications addressing students’ scientifc explanations difer with respect to the focus and the 

goal of their analyses. Whereas some studies explicitly focus on scientifc explanations (either related to 

argumentation or not), others address explanations within the broader framework of argumentation 

and/or as one (of several) inquiry skills. Studies with an explicit focus on explanations clearly separate 

the content and structure of explanations in their analyses. Sampson et al. (2011) investigated the efect 

of an instructional model that requires students to develop, refne, evaluate and use explanations on 

students’ argumentation and explanation. The efect was evaluated using a performance task that asked 

students to generate an original and complex written explanation (called argument) for an ill-defned 

problem. The task is coded according to four criteria: the adequacy of the explanation (regardless of 

its accuracy), the conceptual quality of the explanation, the quality of the evidence and the sufciency 
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of the reasoning. Overall, the results indicate that the intervention increased students’ disciplinary 

engagement and supported them in producing better arguments. Separate codes for content and 

structure can also be found in Gotwals and Songer (2010) and McNeill (2009), whereas Berland and 

Reiser (2009) focus solely on explanation structure.

Within the context of scientifc argumentation, the publications mainly focus on the structure of 

explanations. Students’ explanations are analysed applying Toulmin’s model of argumentation as parts 

of rebuttals (Cavagnetto et al., 2010) or as part of a combined category consisting of Toulmin’s data, 

warrants and backings called grounds (Clark & Sampson, 2008). Results indicate that students’ rebuttals 

are often not fully developed rebuttals but rather objections to ideas (Cavagnetto et al., 2010). The 

analyses by Clark and Sampson (2008) moreover showed that students included grounds in their com-

ments only half of the time. If they included some type of grounds, they mostly relied on an explanation 

without evidence and even if they included evidence, they mostly relied on simple justifcations instead 

of coordinating multiple pieces of evidence. Other studies in this feld focus, e.g. on students’ ability to 

make event–evidence–explanation connections (Ebenezer et al., 2011) or on the nature of students’ 

scientifc thinking, i.e. ‘how they reason, how they try to make sense of scientifc ideas, and how they 

explain and justify answers that they give’ (Steinberg, Cormier, & Fernandez, 2009, p. 020104-1).

Next to discourse analyses, another major approach to assessing students’ explanations is based on 

the analysis of students’ written responses. They are analysed based on diferent types of explanation 

items. Students are either explicitly asked to write their ‘best explanation’ for a specifc phenomenon 

(Herrenkohl et al., 1999, p. 460), to provide explanations for their answers to multiple-choice items 

(Steinberg et al., 2009; White & Frederiksen, 1998) or to answer to assessment prompts, e.g. in the form 

of predict–observe–explain or constructed response items (Furtak & Ruiz-Primo, 2008). In a study ana-

lysing the relative utility of four diferent types of formative assessment prompts in eliciting students’ 

conceptual understanding, the latter authors found that prompts requiring written responses have the 

potential to support student understanding of scientifc content and processes (Furtak & Ruiz-Primo, 

2008).

In summary, various defnitions are used in the context of analysing students’ development of expla-

nations, partly having similarities to defnitions used in the feld of argumentation or the construction 

of models. Consequently, the aim of the analysis also varies with regard to the underlying function of 

the explanation, i.e. to persuade others or to elaborate on one’s understanding. Studies with an explicit 

focus on explanations often separate content and structure of explanations in the analyses while studies 

related to argumentation mainly focus on the structural aspects of the explanation. Regarding the for-

mat of assessment, students’ discourse and written answers to open-ended questions are the dominant 

data sources in the analyses. With respect to instructional approaches to foster the quality of students’ 

explanations, several studies suggest prompting students to incorporate structural features into their 

explanations, e.g. by providing groundings or evidence for arguments and claims.

Constructing models

The activity of constructing and using models is addressed in 14 studies in this review. With the excep-

tion of one study that simply states that students had time for ‘building models’ (Wong & Day, 2009,  

p. 629), all studies provided some further insights into the operationalisation of their understanding of 

the construct. Looking at these studies in more detail, two types of models – real models and mental 

models – have to be distinguished. Real models are, e.g. used to support students’ learning about 

complex systems (Hmelo, Holton, & Kolodner, 2000) or to allow students to understand the diference 

between inference and observation (Akerson & Donnelly, 2010). The majority of publications in this 

review, however, focus on mental models mostly in the general context of scientifc reasoning (e.g. 

Herrenkohl et al., 1999; White & Frederiksen, 1998). In constructing and using mental models, typical 

student activities include predicting, controlling, explaining, organising, thinking, reasoning, developing 

arguments and/or transferring concepts to novel situations. However, the studies in this review vary 
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considerably with respect to the broadness of their approach to modelling and also in the explicitness 

of their defnitions.

A precise and comprehensive defnition is given by Schwarz and White (2005) who defne models 

‘as a set of representations, rules, and reasoning structures that allow one to generate predictions and 

explanations’ (p. 166). The authors understand scientifc modelling as a process that involves the con-

struction, evaluation and revision of a model, adding an additional aspect called meta-modelling knowl-

edge, i.e. students’ knowledge about the nature and purpose of scientifc models. A similar approach 

is employed by White and Frederiksen (1998). In their study, students construct an explicit conceptual 

model (including scientifc laws and representations) with the aim that students should ‘understand the 

form and properties of such scientifc laws and models, the inquiry process needed for creating them, 

and the utility of such models for predicting, controlling, and explaining real-world behaviour’ (p. 12). 

Most studies, however, focus on certain aspects of the above-mentioned defnition mostly without 

explicitly defning their construct. Several studies address the use of models as a tool to support students 

in developing explanations (Herrenkohl et al., 1999; Sampson et al., 2011), whereas others emphasise 

the role of models in making predictions (Gobert et al., 2010; Repenning, Ioannidou, Luhn, Daetwyler, 

& Repenning, 2010) or in understanding the relation between diferent types of variables (Herrenkohl 

et al., 2011). The representational aspect is investigated in detail, e.g. by Kaberman and Dori (2009) who 

explicitly defne ‘modelling skills as the understanding of correct 3D representation of spatial structures 

of molecules and the ability to transfer between diferent molecular representations’ (p. 601).

The assessment of modelling competence naturally depends on the focus of the study. Students 

are, e.g. asked to transfer between representations (Kaberman & Dori, 2009), to explain phenomena 

(Herrenkohl et al., 1999) or to predict and explain patterns in novel situations (Wilson et al., 2010). A 

specifc paper-and-pencil-based modelling test that includes questions concerning students’ meta-mod-

elling knowledge has been developed and used by Schwarz and White (2005). The results obtained in 

these studies show that emphasising modelling in the learning environment increases not only students’ 

modelling skills (Kaberman & Dori, 2009; Sampson et al., 2011) but also leads to learning gains with 

respect to inquiry skills and conceptual understanding. In their evaluation of an inquiry-oriented phys-

ics curriculum, emphasising the diferent aspects of modelling, Schwarz and White (2005), e.g. found 

that the approach facilitated a signifcant improvement in students’ understanding of modelling, and 

especially meta-modelling, which transferred to inquiry skills and to the learning of science content. 

Modelling, however, did not only support inquiry learning but also supported students’ learning and 

application of scientifc models (White & Frederiksen, 1998; Wilson et al., 2010).

In contrast to most other inquiry activities, almost all reviewed studies with a focus on students’ 

construction of models provide details about the understanding of the construct underlying their 

investigation. Across the studies, both real models and mental models are addressed, albeit with difer-

ent aims. While real models are used in the context of complex systems or to emphasise the diference 

between inference and observation (Akerson & Donnelly, 2010), mental models are used in the context 

of scientifc reasoning (e.g. Herrenkohl et al., 1999; White & Frederiksen, 1998), often with a focus on 

specifc activities, e.g. making predictions or illustrating the relation between diferent types of varia-

bles. Regardless of the type of model, mainly paper and pencil tests with multiple-choice, constructed 

response or open-ended items are used to assess students’ abilities in the activity of constructing 

models. To support students in constructing models, most studies advocate emphasising modelling 

in general or diferent aspects of modelling in the learning environment.

Engaging in argumentation and reasoning

Over the past decade, the study of argumentation has been a prominent feature within research in 

science education (Osborne, Simon, Christodoulou, Howell-Richardson, & Richardson, 2013). It has been 

pointed out, however, that researchers often fail to defne what exactly they mean by argumentation 

or argument (Ryu & Sandoval, 2012) and that no consistent usage of the term argumentation has been 

established – sometimes, it refers to any kind of discussion, sometimes to advancing and evaluating 
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knowledge claims based on evidence (Shemwell & Furtak, 2010). This inconsistency can also be observed 

for the publications analysed in this review (for descriptive characteristics of the studies, see Table 1). 

In total, students’ engagement in argumentation and reasoning is addressed in 50 publications – 40 

publications provide further details on the operationalisation of this activity. Studies focus on argu-

mentation and/or reasoning, either exclusively or as one important aspect of scientifc inquiry; in more 

than three-quarters of these publications, both constructs are considered together. With regard to the 

operationalisation, the majority of studies provides details explicitly (or at least implicitly) – neverthe-

less, details are missing in fve publications for argument/argumentation and in eight publications for 

reasoning, respectively. Among the studies that provide details about the operationalisation of their 

constructs, diferences as well as similarities exist.

The most signifcant communality can be seen in the importance given to the use of evidence. Almost 

all studies stress the need to justify diferent kinds of claims with data or evidence as, e.g. in Clark and 

Sampson (2007): ‘Argumentation includes any dialogue that addresses the coordination of evidence 

and theory to support or refute an explanatory conclusion, model, or prediction’ (p. 255). Nevertheless, 

a considerable variety among the studies exists with respect to the operationalisation and the analysis 

of the constructs. Important aspects in this context are, e.g. the diferentiation between argument and 

argumentation, the delimitation to related constructs like explanation and discussion and the frame-

works used for defning and analysing argumentation and/or reasoning.

The majority of studies in the review do not systematically diferentiate between argument and 

argumentation – in some cases, both terms even seem to be used more or less synonymously (e.g. in 

McNeill, 2009). However, there are some studies that explicitly address the diferentiation. In these stud-

ies, the term argument refers to a product (and the content and structure of this product), whereas the 

term argumentation refers to a process: ‘The former [argument] we see as a referent to the claim, data, 

warrants, and backings that form the substance or content of an argument. The latter [argumentation], 

in contrast, we see as a referent to the process of arguing’ (Osborne, Erduran, & Simon, 2004, p. 998); a 

similar diferentiation exists in, e.g. Lin and Mintzes (2010) or Ruiz-Primo, Li, Tsai and Schneider (2010). 

A specifc variation of this diferentiation can be found in Wilson et al. (2010) as well as in Berland (2011) 

who defne argument as a scientifc explanation and argumentation as the process of developing and 

evaluating such explanations. In accordance with earlier fndings (Berland & Reiser, 2009), the studies in 

Table 1. Descriptive characteristics of the publications in the review related to argumentation and reasoning (the numbers give the 
numbers of publications within the different categories out of a total of n = 40 studies focusing on argumentation and providing 
conceptual details).

aStudies can belong to more than one category.
bThe category also includes adapted versions of the original model.
cRaven’s test = Raven’s progressive tests of non-verbal reasoning.

Constructs

Argument(ation) + reasoning Argument(ation) Reasoning
31 7 2

Definition of argument(ation)
Explicit Implicit Examples Not given
27 5 1 5

Definition of reasoning
Explicit Implicit Examples Not given
16 7 2 8

Contexta

Science content Socioscientific/ill-structured Not described
33 7 2

Framework for analysisa

Toulminb Mercer Raven’s testc Self-developed Content Not described
22 1 1 13 1 3
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this review show some disagreement whether explanation and argumentation are regarded as comple-

mentary (e.g. Berland & Reiser, 2009; McNeill, 2011; Ruiz-Primo, Furtak, Ayala, Yin, & Shavelson, 2010) or 

as a single practice (e.g. Gotwals & Songer, 2010; Wilson et al., 2010). Berland and Reiser (2009) suggest 

combining argumentation and explanation into the single practice of constructing and defending scien-

tifc explanations. This combination in some respect closes the gap to more complementary viewpoints 

as, e.g. expressed by McNeill (2009): ‘Constructing an explanation does not necessitate using evidence 

to support a conclusion or trying to convince or persuade another individual that your explanation is 

correct, yet these are key aspects of scientifc argumentation’ (p. 235). The aspect of persuasion is also 

a key aspect in delimitating argumentation from discussion: ‘The label and term argumentation rather 

than discussion was used to emphasise debate and negotiation using specifc methods of persuasion’ 

(Hickey, Taasoobshirazi, & Cross, 2012, p. 1255; see also Shemwell & Furtak, 2010).

With respect to argumentation, two major operationalisations can be identifed: argumentation as 

students’ general use of evidence (data and scientifc concepts) to construct arguments or explanations 

about the phenomenon under study (e.g. Erduran, Simon, & Osborne, 2004; McNeill, 2011; Osborne  

et al., 2004) and argumentation as a social and dialogic interaction in which the participants try to 

persuade or convince each other of the validity of their claims until one participant (or side) wins and 

the other loses (e.g. Berland & Reiser, 2009; Chin & Osborne, 2010). The aspect of persuasion is spe-

cifcally addressed in approximately one-quarter of the publications in this review. However, several 

authors stress the point that the social and collaborative component of argumentation is not solely 

competitive but also a means to collaboratively make sense of the phenomenon under study (Belland 

et al., 2011) as well as to solve problems and to advance knowledge (Clark & Sampson, 2007). Sampson  

et al. (2011) even argue that 

in science, argumentation is not a heated exchange between rivals that results in winners and losers or an efort 
to reach a mutually benefcial compromise; rather it is a form of “logical discourse whose goal is to tease out the 
relationship between ideas and evidence”. (p. 218)

To defne, analyse and evaluate argumentation, the majority of studies in the review refers to the 

model by Toulmin (1958) or adapted versions of his model. The model is used to analyse the structural 

features and content of arguments produced by single individuals (e.g. Clark & Sampson, 2007; Kelly, 

Druker, & Chen, 1998; McNeill, 2011) as well as the quality of argumentation in small group discussions. 

Erduran et al. (2004), e.g. developed a framework where the quality of argumentation is assessed in terms 

of fve levels which illustrate the quality of opposition or rebuttals in the student discussions (Osborne 

et al., 2004). Despite the prevalent usage of Toulmin’s model in the analysis of argumentation in science 

classrooms, however, problems can still be observed with respect to the clarifcation of what counts as 

claim, data, warrant and backings (Erduran et al., 2004; Shemwell & Furtak, 2010). Some authors thus 

collapse Toulmin’s data, warrants and backings into a single code called grounds to address the practical 

difculty to reliably diferentiate among these components (e.g. Clark & Sampson, 2007; Erduran et al., 

2004). Shemwell and Furtak (2010) argue that in the feld of scientifc argumentation, numerous studies 

can be identifed that do not use any normative criteria for what can count as support for arguments. As a 

consequence, little to no information is provided about the role of students’ subject matter conceptions 

in their use of evidence or the degree to which students’ arguments refect scientifc criteria for validity.

Among the studies using Toulmin’s model, reasoning is mostly understood as one component of 

an argument, namely: as the justifcation that shows why the data count as evidence to support the 

claim (e.g. McNeill, 2009). Some authors extend this defnition by arguing that reasoning should also 

include the conceptual knowledge that the students apply to a specifc situation (e.g. Ruiz-Primo et al., 

2010). Other operationalisations defne reasoning in a more general way as the process of constructing 

(White & Frederiksen, 1998) and/or critiquing arguments (Dawson & Venville, 2009; Osborne et al., 2013). 

However, Toth et al. (2002) focus specifcally on one reasoning skill, namely: the evaluation of empirical 

evidence against multiple hypotheses. In 14 publications, the relationship between argumentation and 

reasoning remains vague or unclear.
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In addition to Toulmin’ model, studies in this review use the framework by Mercer (Chin & Teou, 

2009); in almost one-third of the publications, self-developed frameworks form the basis of the anal-

ysis. These frameworks difer considerably with respect to the comprehensiveness and focus of their 

operationalisations of argumentation; some studies simply make use of established instruments like, 

e.g. Raven’s matrices for non-verbal reasoning (Osborne et al., 2013) or exclusively focus on whether 

evidence is provided or not (Gobert et al., 2010). Others, however, use detailed frameworks like the 

evidence-based reasoning framework (e.g. Brown, Nagashima, Fu, Timms, & Wilson, 2010), frameworks 

that show similarities to Toulmin without an explicit reference (e.g. Belland et al., 2011; Hickey et al., 

2012) and self-developed rubrics, e.g. related to students’ ability to defend arguments (Ebenezer et al., 

2011). Studies that specifcally address the aspect of social interaction within the construct of scientifc 

argumentation use additional coding schemes that help identify the features of the interaction and the 

nature of the engagement between students (e.g. Clark & Sampson, 2008; Kim & Song, 2006; Osborne 

et al., 2004; Sampson et al., 2011). Sampson et al. (2011), e.g. coded students’ reaction to ideas (accept, 

discuss, reject and/or ignore) and the overall nature or function of the contributions the students 

made to the conversation when discussing the merits of an idea (information seeking, expositional, 

oppositional and supportive).

Studies difer not only with regard to the operationalisation of argumentation, but also with respect 

to the diferent methods used to assess students’ abilities in argumentation. Principally, three formats 

can be distinguished: transcripts of verbal data of students’ discourse (e.g. Osborne et al., 2004); diferent 

types of students’ written argumentation like, e.g. notebooks (e.g. Ruiz-Primo et al., 2010), evidence maps 

(Toth et al., 2002) and online discussions (e.g. Clark & Sampson, 2007); and assessment tasks consisting 

of open (e.g. Lin & Mintzes, 2010; McNeill, 2009), constructed response (e.g. Wilson et al., 2010) or even 

multiple-choice items (Rivet & Kastens, 2012).

A major difculty in analysing students’ argumentation is the diferentiation between the structure 

and components of an argument and its accuracy. This aspect refects the above-mentioned question 

whether scientifc argumentation ability includes a component of conceptual quality or not – or, as Kelly 

et al. (1998) put it, whether an argument is substantive or not: ‘An argument is considered substantive 

when knowledge of the actual content is requisite for understanding’ (p. 853; see also Clark & Sampson, 

2007). Shemwell and Furtak (2010) explicitly refer to this question by diferentiating argumentation 

and scientifc argumentation based on the kinds or levels of support that can warrant knowledge 

claims. Among the publications in this review, both operationalisations of argumentation in science 

classrooms exist. Some studies focus solely on the structure and structural components of students’ 

arguments, regardless of the accuracy of the science content (e.g. Cross, Taasoobshirazi, Hendricks, & 

Hickey, 2008; Dawson & Venville, 2009; Erduran et al., 2004; Kelly et al., 1998; McNeill, 2011; Osborne  

et al., 2004). Others, however, include separate codes to address the aspect of conceptual quality. Clark 

and Sampson (2008), e.g. coded the conceptual quality of a student comment as either non-normative, 

transitional, normative or nuanced. Similarly, the accuracy of a claim or a scientifc explanation is coded 

as a separate measure by Ruiz-Primo et al. (2010) and Sampson et al. (2011). Brown et al. (2010) as well 

as Shemwell and Furtak (2010) eventually included codes for conceptual sophistication, specifcity 

and validity (Brown et al., 2010) and conceptual explicitness, respectively (Shemwell & Furtak, 2010).

The diversity in operationalisations is refected in the aims of studies investigating argumentation 

in science education. Generally, four major aims can be identifed. The frst category is comprised of 

studies analysing student argumentation in a survey-like manner. Findings consistently show that stu-

dents struggle with providing high-quality arguments. Arguments are not only found to be largely 

intuitive and emotive (Dawson & Venville, 2009), but they often include unwarranted claims and miss a 

rational informal reasoning component (Dawson & Venville, 2009; Kelly et al., 1998). If students provide 

warranted arguments, however, these show considerable complexity and can be described by three 

dimensions, the argument strategy, the referent in the warrant and the type of warrant (Kelly et al., 1998).

A second set of studies focuses on efects of teachers’ instructional practices. No consistent efects on 

student reasoning could be found in an intervention analysing the efects of a professional development 

activity aiming to improve teachers’ ability to use instructional practices associated with argumentation 
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in the teaching of science (Osborne et al., 2013). Teachers’ use of a curriculum explicitly designed to 

support students in the construction of scientifc arguments to explain phenomena was investigated 

by McNeill (2009). She found that some teachers tend to simplify the defnition of scientifc argumen-

tation, resulting in decreased learning gains in terms of students’ ability to write scientifc arguments.

The majority of studies in this review address the efects of instructional interventions on student 

argumentation. Diferent types of interventions can be distinguished. In general, learning environments 

specifcally designed to foster argumentation result in positive efects on students’ argumentation 

ability (McNeill, 2011; Osborne et al., 2004; Ryu & Sandoval, 2012; Sampson et al., 2011). In their analysis 

at elementary level, Lin and Mintzes (2010) distinguished between high- and low-achieving students. 

They concluded that an explicit instruction in argumentation is particularly benefcial for high-achieving 

students, whereas low achievers lag in their ability to master argumentation skills which was partially 

attributed to a lack of conceptual knowledge. Gotwals and Songer (2010) eventually found that even 

when students understand the content, they still have difculties in creating a complete scientifc 

explanation with a claim, sufcient evidence and reasoning. The relationship between learning gains 

and engagement in scientifc argumentation was analysed by Cross et al. (2008). They concluded that 

the argumentative structures, the quality of these structures and the identities that students take on 

during collaborative group work are critical in infuencing student learning and achievement in science. 

Studies investigating the efects of inquiry interventions on students’ argumentation lead to inconsist-

ent fndings. Whereas some studies report positive efects of inquiry-based instructional activities on 

reasoning and argumentation (Steinberg et al., 2009; Wilson et al., 2010), others report difculties in 

engaging students in high-quality argumentation, especially with respect to the need of supporting 

claims with data, evidence or reasoning (Ruiz-Primo et al., 2010; Taasoobshirazi & Hickey, 2005). A last 

type of intervention consists of computer-based scafolds. Belland et al. (2011), e.g. found that such 

scafolds are especially benefcial for low-achieving students in helping them construct more coherent 

arguments.

The last category of studies consists of evaluations of specifc assessment methods designed to 

assess reasoning and argumentation. Examples are, e.g. the Evidence-Based Reasoning Assessment 

System (Brown et al., 2010) and the analytical framework for assessing argumentation in online sci-

ence learning environments developed by Clark and Sampson (2008) that allows for analysing the 

relationships between levels of opposition, discourse moves, use of grounds and conceptual quality. 

Erduran et al. (2004) present two methodological approaches that signifcantly extend and improve 

the use of Toulmin’s model for tracing argumentation discourse in science classrooms. An intelligent 

argumentation assessment system based on machine learning techniques was eventually developed 

and evaluated by Huang et al. (2011). The results showed that the system is able to determine the 

argumentation skill level based on the students’ arguments while at the same time promoting students’ 

argumentation levels.

In summary, engaging in argumentation and reasoning is the inquiry activity addressed by most 

articles in this review. Across these studies, some aspects stand out: most studies put a major emphasis 

on the use of evidence but do not systematically diferentiate between argument and argumentation. In 

general, there is also an overlap between argumentation and explanation and some authors advocate 

to combine both into the single practice of constructing and defending scientifc explanations (Berland 

& Reiser, 2009).

Two major operationalisations can be identifed with regard to argumentation: students’ general use 

of evidence (data and scientifc concepts) to construct arguments or explanations (e.g. Erduran et al., 

2004; McNeill, 2011; Osborne et al., 2004) and a social and dialogic interaction in which the participants 

try to persuade or convince each other (e.g. Berland & Reiser, 2009; Chin & Osborne, 2010). To analyse 

and evaluate argumentation, the majority of studies in this review refers to the model by Toulmin (1958) 

or adapted versions of his model, but often it is not totally clarifed what counts as claim, data, warrant 

and backings. As a consequence, only few studies provide information about the role of students’ sub-

ject matter conceptions in their use of evidence (as e.g. in Ruiz-Primo et al., 2010), making it difcult to 

diferentiate between the structure and components of an argument and its accuracy.
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Overall, four major aims are identifed in the studies investigating argumentation: analysing stu-

dent argumentation in a survey-like manner, analysing the efects of teachers’ instructional practices 

or instructional interventions on student argumentation and the evaluations of specifc assessment 

methods designed to assess reasoning and argumentation. Regarding assessment formats, the analysis 

of video- or audiotaped material, of written products (notebooks, online discussions, etc.) and written 

or computer-based tests (multiple choice or constructed response) is used almost equally frequent in 

the diferent studies.

Communicating

Communication is not restricted to a specifc stage of the inquiry process but constitutes an overarching 

ability that serves two major purposes, namely: to better understand scientifc concepts and proce-

dures and to participate in a scientifc community (Ruiz-Primo, Li, Ayala, & Shavelson, 2004). Among the 

studies in this review, 23 studies address the aspect of scientifc communication. In 17 of these publi-

cations, details regarding the operationalisation of this aspect of scientifc inquiry are provided. Two 

broad categories of studies can be distinguished, studies that analyse the structure of the interaction 

in communication processes and studies that focus on the quality of the interaction.

The frst aspect is often analysed in the context of argumentation and explanation in which commu-

nication is regarded both as a means to construct and articulate understanding and as a form of social 

interaction. Berland and Reiser (2009), e.g. investigated how students articulate their understanding 

as one instructional goal of constructing and defending scientifc explanations. The learning environ-

ment fostered this goal by highlighting the structural elements necessary in the articulation of an 

understanding and by explicitly structuring the ways in which students articulated their explanations. 

In the analysis, two styles of communication could be distinguished, the frst weaving together claim, 

evidence and reasoning components, and the second clearly delineating them. A focus on the relation-

ship between claim and evidence and the justifcation of the own position can also be found in Kim 

and Song (2006). In their study, student groups interacted with one another in a peer review process 

similar to conference presentations by scientists. Results showed that the resulting critical discussions 

proceeded through the four stages of focusing, exchanging, debating and closing. Based on features 

of constituent stages, the authors distinguished four types of discussion: exchanging information, 

consensus, coexistence and extension. A similar approach was followed by Sampson et al. (2011) who 

analysed the nature of students’ reactions to ideas proposed by their peers.

Specifc types of conversations emphasising communication as a form of social interaction were 

investigated by two studies in the context of informal formative assessment. Hickey and Zuiker (2012) 

analysed conversational turns in student-directed feedback conversations with respect to six mutually 

exclusive and exhaustive categories of increasingly desirable forms of domain-specifc interaction: 

of task, neutral, procedural, factual, argumentation and argumentation beyond the intervention. 

The authors found that almost one-third of the conversational turns were coded as of task and only 

one-quarter as argumentation; no argumentation reaching beyond the intervention occurred.

Ruiz-Primo and Furtak (2007) argue for the importance of social processes, i.e. how knowledge is 

communicated, represented and argued in the context of assessment conversations:

Social processes refer to the frameworks involved in students’ scientifc communications needed while engaging in 
scientifc inquiry, and can be oral, written, or pictorial. It involves the syntactic, pragmatic, and semantic structures 
of scientifc knowledge claims, their accurate presentation and representation, and the use of diverse forms of 
discourse and argumentation. (p. 62)

In their study exploring the relationship between teachers’ informal formative assessment practices 

and students’ learning, however, they considered the social processes to be by nature embedded in 

assessment conversations and thus did not specify teacher interventions in this domain.

As another focus, the nature of student–student but also student–scientist communication was 

analysed in the context of online learning environments. Kubasko, Jones, Tretter, and Andre (2008) 

investigated students’ synchronous (using live video conferences) and asynchronous (using e-mail) 
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communication with scientists. Students’ questions to the scientists were coded according to fve cat-

egories: inquiry and interpretation questions, personal questions, technology questions, clarifcation 

questions and equipment questions. The authors found that in the synchronous treatment group, most 

of the questions focused on personal questions about the scientist, whereas in the asynchronous group, 

they were mostly related to the interpretation of data and use of technology.

The second aspect, namely the quality of students’ communication, is mainly addressed with respect 

to the documentation and communication of inquiry activities carried out by the students. According to 

Ebenezer et al. (2011), scientifc communication involves ‘the sharing of ideas with respect to research 

questions, methods, and claims for peer response and evaluation meeting objectivity from a social 

perspective’ (p. 99). It was operationalised by students’ ability to write a clear scientifc paper with 

sufcient details so that another researcher could replicate or enhance the methods and procedures. 

In comparison with other inquiry abilities, the authors found that students reached comparably lower 

profciency values for communication.

In a study evaluating the use of students’ science notebooks as assessment tools, Ruiz-Primo et al. 

(2004) considered each notebook entry as a communication instance. According to the purpose, the 

entries could belong to diferent types of communication (e.g. defning, interpreting, concluding but 

also reporting of an experiment or a procedure) and take diferent forms, e.g. a table or graph to report 

data (schematic communication) or a simple description of an observation (verbal communication). 

The quality of the communication found in students’ notebooks was coded based on two criteria: (1) 

Were students’ notebook communications appropriate according to the respective scientifc genres (e.g. 

descriptions or defnitions as minor or lab reports as major genres)? (2) Did students’ communications 

indicate conceptual and procedural understanding of the content? Results indicated that students’ 

communication skills and understanding were far from the maximum score and did not improve over 

the course of instruction (Ruiz-Primo et al., 2004).

Samarapungavan et al. (2008) evaluated the efects of guided inquiry on diferent measures of 

student learning in kindergarten. Here, communication was defned as children’s ability to discuss, 

refect upon and summarise what they had learned. The authors assessed this inquiry activity by ana-

lysing students’ portfolios with respect to their profciency in communicating about their investigations 

verbally or through drawings and pictures. They found that most children were rated profcient or 

highly profcient. A similar focus on verbal and schematic communication could be found in Gobert 

et al. (2010). They equated communicating an argument with reviewing, summarising and explaining 

data and developing and using diagrams; students’ abilities in communication were assessed by using 

open-ended questions.

Two studies eventually addressed communication, specifcally in the context of peer and self-

assessment. In a methodology paper, Chang et al. (2011) described the development and evaluation 

of a self-assessment Likert scale for learning science that consists of two subscales, one for inquiry 

and one for communication. The authors defned communication as a ‘meaningful process in which 

the giver transforms the message into signs (oral, written, or action) and passes it to the receiver’  

(p. 1219). It consists of four facets: (1) Expressing – use of verbal and written language, mathematical 

signs, graphs and other representations; (2) Evaluating – analyse or judge the rationality of arguments; 

(3) Responding – adopt suitable actions based on feedback; and (4) Negotiating – reach an agreement 

through discussion. White and Frederiksen (1998) included communicating well in the refective 

assessment part of a physics inquiry curriculum. Communicating well was defned as students’ ability to 

‘clearly express their ideas to each other or to an audience through writing, diagrams and speaking. Their 

communication is clear enough to allow others to understand their work and reproduce their research’ 

(p. 25). Students rated their profciency on a Likert scale. The authors found that the refective assessment 

process appeared to improve social interaction (i.e. teamwork and communication), especially for low-

achieving students.

In summary, most studies regard communication as a means to either better understand scien-

tifc concepts and procedures or to participate in a scientifc community. Unlike the inquiry activities 

reviewed so far, it is considered an overarching ability that is not restricted to a specifc stage of the 
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inquiry process. Similar to argumentation, communication is mostly analysed with a predominant focus 

on the structure and interaction in the communication process or with an emphasis on the quality of 

this interaction. In the former case, the analysis is often conducted in the context of argumentation 

and explanation, indicating an overlap in both theoretical conceptions and empirical investigations 

regarding these three inquiry activities.

Few studies try to foster students’ communication skills by scafolding or structuring the ways in 

which students articulate their understanding (Berland & Reiser, 2009), by computer-based scafolds 

(Ebenezer et al., 2011) or by refective assessment (White & Frederiksen, 1998). However, the baseline 

of empirical results regarding students’ communication skills is that students often reach lower prof-

ciency values for communication in comparison to other inquiry activities (Ebenezer et al., 2011) and 

these values are often far from the maximum score (Ruiz-Primo et al., 2004). Regarding assessment, 

mainly video transcripts (e.g. to code conversational turns) and written material (e.g. research papers, 

constructed response items, notebooks or portfolios) are used.

Summary and discussion of fndings

The overarching intention of this review was to contribute to a better understanding of the concept of 

scientifc inquiry. Despite the interest that scientifc inquiry has received in science education research 

in the last decades, there still exists disagreement not only about the efciency of the approach for 

student learning, but also about its defning features as an instructional approach.

In order to address this issue, we decided to take a rather atomistic approach by frst structuring 

the overall theoretical construct of scientifc inquiry into a list of inquiry activities (cf. Bell et al., 2010; 

Linn et al., 2004; National Research Council, 1996, 2000, 2012; Pedaste et al., 2015) and then analysing 

the operationalisations of these single inquiry activities in form of their defnitions, their implementa-

tion in learning environments and interventions and their assessment (cf. Figure 1). The picture which 

emerged for each activity on the level of the corresponding empirical studies was illustrated in the 

previous section. The rationale underlying this approach is that an understanding of the whole frst 

requires a thorough understanding of its constituting parts. However, looking at a complex construct 

like scientifc inquiry in such an atomistic way inevitably leads to the question whether the sum of the 

parts actually fully represents the whole – a discussion, e.g. known from the feld of competence-ori-

ented teaching (e.g. Sadler, 2013). In the following, we will thus try to trace the route from the snapshots 

of these individual inquiry activities back to the theoretical construct by asking the question what we 

can learn from this review about the commonalities and discrepancies in the operationalisations of the 

diferent inquiry activities, about the characteristics of the collocation of inquiry activities as a whole and 

about the overarching construct of scientifc inquiry as it is refected in empirical research (cf. Figure 1).

The single bits and pieces

Taking on the atomistic perspective and contrasting the pictures of the single inquiry activities as pre-

sented in the previous section, the studies difer in various aspects. These can be allocated to formal 

and methodological diferences like study design and assessment or content-related diferences like 

type and aim of the activity.

Formal and methodological aspects
With regard to the research design, the reviewed studies difer in the instructional setting (ranging, 

e.g. between project-based teaching and single problem-solving tasks, thus also resulting in huge 

diferences regarding time-on-task), the social setting (e.g. collaborative vs. individualised), the edu-

cational setting (e.g. out-of-school labs vs. implemented in regular courses, thus including also low- or 

high-stakes consequences), the mode of operation (e.g. hands-on vs. computer-based), the student 

activity (e.g. constructive, receptive, manipulative and/or self-evaluative), the assessment methods (e.g. 

multiple choice, portfolio and/or written essays) and assessment purpose (formative vs. summative). All 
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these factors interact with the students’ activities and cognitive processes during their inquiry in addi-

tion to the type, number and sequencing of diferent inquiry-oriented activities. However, few studies 

investigated the efect of manipulating one of these factors and these showed inconsistent fndings 

(e.g. Stecher et al., 2000; Toth et al., 2002). Consequently, the question remains, e.g. to what extent the 

assessment format or the mode of operation impacts the results of evaluating students’ abilities in the 

diferent inquiry-oriented activities. Across all activities addressed in this review, these questions are 

barely researched, let alone answered.

The studies in this review, however, do not only show diversity in the study designs but difer also 

with respect to the explicitness or vagueness of the descriptions of their theoretical background with 

several studies giving only implicit and vague details. This vagueness has also been observed and crit-

icised in earlier reviews with respect to the defnition of scientifc inquiry as a holistic concept (Furtak 

et al., 2012; Schroeder et al., 2007).

In addition, the summative evaluations of each activity in this review also indicate ambiguities 

between the theoretical conceptions and their implementation in the individual studies. In the case of 

argumentation, the model by Toulmin (1958) or an adapted version is used in the majority of studies but 

often it is not clarifed what counts as the fundamental components within this model (i.e. claim, data, 

warrant and/or backings). Hence, beyond the vagueness in the operationalisation of inquiry-oriented 

activities themselves as discussed above, the implementation of these conceptions in the diferent 

studies also varies considerably. Of course this vagueness may be attributed partly to space limitations 

in research articles, as this is the sole data source for this review, but it seems doubtful whether diferent 

authors (and readers) share the same understanding when using the same terms, on all levels ranging 

from the general construct of scientifc inquiry to the details of implementing specifc student activities.

Perspectives and foci on scientifc inquiry
In addition to these formal and methodological diferences among studies in terms of study design and 

explicitness, they also difer with respect to the type of activities they focus on. The number of research 

papers reviewed for each activity difers remarkably, ranging from 11 (searching for information) to 50 

publications (engaging in argumentation and reasoning; see Figure 3). Accordingly, specifc hot spots 

of empirical research can be identifed focusing mainly on the phases of carrying out experiments as 

well as explaining and evaluating the results while paying less attention to the preparatory phase, i.e. 

the identifcation of research questions, the searching for information and the formulation of hypoth-

eses or predictions.

There seems to be no correlation, however, between the number of publications reviewed for a 

specifc activity and the variance observed in the operationalisation of the respective activities. As in 

the case of engaging in argumentation and reasoning or constructing and using models, these activities 

of scientifc inquiry have evolved as their own research felds during the last decades. Here, predom-

inant operationalisations can be identifed, e.g. Toulmin’s model of argumentation. This conceptual 

saturation might also indicate a certain degree of elaboration within these research felds which is also 

supported by existing reviews, e.g. the review of the assessment of modelling competence by Nicolaou 

and Constantinou (2014). However, the authors also point out that the reviewed studies usually difer 

vastly according to their operationalisation while also addressing only parts of what can be regarded 

as modelling competence, indicating both diversity and shortcomings regarding research on these 

activities. This conclusion can be generalised to all activities reviewed in this paper.

When contrasting the operationalisations of particular inquiry activities, diferences between the 

reviewed studies could sometimes be characterised by a product vs. process dichotomy. For instance, 

studies incorporating the activity of searching for information had either an information focus or a 

search focus in their evaluation of student performance. Hence, either the contribution of the collected 

information to the problem-solving process (e.g. Belland et al., 2011) or students’ search behaviour was 

rated (e.g. Toth et al., 2002). Similarly, engaging in argumentation is sometimes analysed with regard 

to the content and/or structure of the developed argument (e.g. Berland, 2011) or with regard to the 

process of argumentation (e.g. Osborne et al., 2004).
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A similar classifcation could be used regarding students’ actual performance. Here, studies difer 

in terms of whether students, e.g. conduct their own investigation (cf. Chen & Klahr, 1999), evaluate 

a given set-up (e.g. Zion et al., 2005) or self-evaluate their own performance (e.g. Chang et al., 2011). 

Similarly, students occasionally collected and analysed their own data; sometimes, they were provided 

with the data. With regard to both the product vs. process dichotomy and the degree of independent 

agency on the students’ side, no studies were identifed where the diferent viewpoints actually made a 

diference. This aspect stands in close relation to the question of a preferable format for the assessment 

of all or some of these activities and to which extent the results from diferent assessment formats and 

activity operationalisations are actually comparable or rather complementary.

The whole and the sum of the parts

With regard to the rather atomistic approach taken in this review, the question is whether this approach 

can provide any insights into a more holistic perspective on the construct of scientifc inquiry. Regarding 

the diversity and variability of the operationalisations, instructional settings, social and educational set-

tings, the modes of operation, the assessment methods and assessment purposes implemented in the 

reviewed studies, it is difcult to fnd commonalities and common themes. However, when broadening 

the perspective beyond the individual inquiry activities to their collocation as a whole, three aspects 

stand out that all pertain to relationships: between the diferent inquiry activities we atomised in this 

review, between doing inquiry and understanding inquiry and between inquiry and science concepts.

On assembling the diferent parts
While many studies in this review analysed inquiry-oriented activities as distinct aspects, several contri-

butions tried to fnd indicators illustrating to which extent students can connect the diferent activities. 

Herrenkohl et al. (2011) as well as White and Frederiksen (1998) proposed a coherence score as

a measure of how diferent parts of the thought experiment are related to one another such as how well the exper-
imental design addresses the hypotheses. In past work the coherence score has been the most sensible score for 
revealing instructional efects. (Herrenkohl et al., 2011, p. 2)

Regarding the disparity between this emphasis on coherence among the diferent inquiry-oriented 

activities and the sole implementation of few more or less distinct activities in numerous research articles 

included in this review, a desideratum for further research on more comprehensive implementations of 

inquiry-oriented activities can be put forward. While some studies (e.g. Herrenkohl et al., 2011; White & 

Frederiksen, 1998) analysed coherence on the students’ side, i.e. how diferent parts of the experiment 

are aligned to one another as described above, no study was identifed that explicitly emphasised 

the coherence on the conceptual side of implementing scientifc inquiry in the classroom, including 

procedural, epistemic and conceptual features of the distinct scientifc activities (as distinguished, e.g. 

by Furtak et al., 2012; Osborne, 2014). This demand for more research on comprehensive implementa-

tions of inquiry-oriented activities may sound trivial but the realisation will prove difcult. Despite the 

large body of research accumulated in this review, it is challenging to extract a coherent sequence of 

inquiry-oriented activities (in terms of procedural, epistemic and conceptual features). While it might 

be easy to agree with the type, number and sequence of activities, the theoretical basis for deciding on 

the conceptual background for each activity, refecting the associated epistemic perspective, as well 

as maintaining coherence across the diferent activities needs to be extended.

The bird’s eye view
The question of coherence is not only a problem for researchers and teachers. Students must also 

acknowledge and appreciate the function and interplay of the diferent scientifc activities. This episte-

mology is often referred to as students’ understanding of the nature of science (NOS; McComas & Olson, 

1998; Osborne, Collins, Ratclife, Millar, & Duschl, 2003), the nature of scientifc knowledge (Lederman, 

2006) or the nature of scientifc inquiry (NOSI; Schwartz, Lederman, & Lederman, 2008).1 Almost all 
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studies included in this review, however, focus mainly on students’ performance when working on 

inquiry-oriented activities. Hence, a striking fnding of this review is how seldom the perspective of 

students on inquiry in general or on specifc activities is explicitly addressed and taken into account 

in the research literature. Few studies addressed the need for postulating alternative hypotheses, the 

interpretation of conficting or contradictory fndings, the processing of difuse data or the discussion 

of quality standards or good scientifc practice (e.g. Schwarz & White, 2005; Vellom & Anderson, 1999; 

White & Frederiksen, 1998). These studies indicate, however, epistemological constraints in students’ 

perception and interpretation of, e.g. the role of hypotheses in the inquiry process (e.g. Kyza, 2009) 

which underlines the importance of such activities (in addition to clean and structured examples) to 

develop students’ epistemology which in turn allows students to refect on the scientifc activities they 

encounter (Pickering, 1992).

Incorporating an epistemological perspective on scientifc inquiry might be benefcial not only for 

students’ understanding, but also for the teaching of inquiry. Regarding the analysis of the diferent 

inquiry activities in this review, a common instructional approach was to repeatedly expose students to 

these activities (e.g. identifying questions or formulating hypotheses). However, several studies seemed 

to make more explicit use of the epistemological structure of the particular inquiry activity. For instance, 

Toth et al. (2002) proposed the use of evidence maps and refective assessments that encouraged stu-

dents to link back their data analysis and interpretation to previous steps in the inquiry process, i.e. to 

their hypotheses and theories. In the case of constructing models, Schwarz and White (2005) as well 

as White and Frederiksen (1998) proposed to make use of meta-modelling knowledge, i.e. students’ 

knowledge about the nature and purpose of scientifc models. To a certain extent, these approaches 

of metacognitive elements partly overlap with the epistemological features regarding NOS/NOSI. From 

this perspective, metacognitive and epistemological aspects might support students in understanding 

the purpose and goals of the diferent inquiry activities as well as their interrelations and the utility 

of the whole process for understanding, explaining, controlling and predicting real-world phenom-

ena. Incorporating these metacognitive or epistemological aspects more explicitly into instructional 

approaches might result in more efcient teaching strategies than mere repetition of specifc activities.

Science and scientifc inquiry
With regard to argumentation, explanation and communication, it is evident that these activities are not 

unique to scientifc inquiry but represent major areas within and outside of school. In the pedagogical 

context, these activities transcend all domain borders, ranging from genres in the language arts to 

mathematical proofs. With regard to the reviewed empirical studies, this generality is also refected by 

the application of domain-general theoretical models in these areas, e.g. Toulmin’s model of argument 

patterns or interaction analysis in communication settings. Consequently, some studies focus solely 

on structural features, e.g. the structure of an argument, while other studies (also or solely) evaluate 

the accuracy of the components of an argument, i.e. whether the argument is substantive or not (Kelly  

et al., 1998). Similarly, the majority of studies focusing on formulating hypotheses often evaluate stu-

dents’ answers solely with regard to whether the proposed hypothesis is testable or not. For these and 

also some of the other activities, the question arises about the role of science knowledge in these inquiry 

activities. While a generic perspective on specifc inquiry activities is certainly of value for fostering their 

understanding, e.g. to illustrate characteristics of a hypothesis or what counts as an argument, blending 

content knowledge and inquiry activities is certainly the more expansive goal of incorporating inquiry 

in science teaching (cf. Duschl & Grandy, 2011). Authentic science is characterised ‘as the integration 

of the social and material aspects of science’ and only the integration of both aspects ‘allows students 

to fully understand how and on the basis of what authority knowledge is formed in the scientifc com-

munity’ (Cavagnetto et al., 2010, p. 429). From this perspective, it is therefore questionable to which 

extent the process of inquiry is discernible from science content knowledge – or to which extent this 

disjunction is desirable.

Interestingly, in 46–85% of the studies (depending on the inquiry activity, total mean of 67%), the 

authors included a science achievement test (partly own developments, partly central standardised 
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tests, with diferent foci and length) to relate students’ achievement to the results of their analysis of a 

specifc or several inquiry activities. The common goal of this type of analysis was to investigate whether 

fostering students’ ability in certain activities would also increase their science knowledge. The inverse 

question of how students make use of their science knowledge in acquiring and carrying out a specifc 

activity is addressed only in rare cases. For instance, Kaberman and Dori (2009) diferentiated science 

content, thinking level and chemistry understanding levels with regard to students’ ability to formulate 

hypotheses. Similarly, Samarapungavan, Patrick and Mantzicopoulos (2011) focused on students’ ability 

to use science concepts in the generation of research questions. Across the empirical studies reviewed 

here, however, the relationship between scientifc inquiry and substantive science concepts is almost 

a blind spot. This is somewhat surprising, especially, for instance, with regard to the NGSS (National 

Research Council, 2012) and its approach of three-dimensional learning along practices, cross-cutting 

concepts and disciplinary core ideas. It seems that the interplay between these dimensions is illuminated 

to a lesser extent than commonly assumed.

Guided and self-directed inquiry
In instructional contexts, the complex holistic process of scientifc inquiry is often intentionally reduced, 

especially in the case of guided (in contrast to open) forms of inquiry. Based on earlier work of Schwab 

(1962), Blanchard et al. (2010) distinguished four levels of inquiry – verifcation, structured, guided and 

open, respectively – depending on whether the source of the question, the data collection methods and 

the interpretation of results are given by the teacher or open to the students. Other models describe 

inquiry instruction not as discrete levels but as a continuum, ranging from little to more learner self-di-

rection, and more to little direction from the teacher or material (National Research Council, 2000). In 

this notion, guided scientifc inquiry teaching can be regarded as representing the continuum of science 

instruction between the two extremes, traditional, direct instruction and open-ended scientifc inquiry, 

‘where students are guided, through a process of scientifc investigation, to particular answers that are 

known to the teacher’ (Furtak, 2006, p. 454).

It was beyond the means of this review to distinguish the diferent levels of inquiry in the analysis. 

However, the feature of guidance or scafolding was frequently included in studies across inquiry-

oriented activities. Regarding the demands which inquiry-based approaches pose to students, it 

becomes apparent that students with diferent degrees of ability and experience need specifc help 

and support. Scafolding and guidance can vary on a continuum, from complete learner self-direction, 

on the one end, to teacher-led instruction, on the other end. In their meta-analysis, Furtak et al. (2012) 

concluded that teacher-led inquiry lessons seem to have a larger efect on student learning than those 

that are student led. However, the mechanism for this diferential efect remains unclear. It could be the 

more direct experience of inquiry on the students’ side when the learning conditions are more structured 

or guided by the teacher (in contrast to student-led conditions; Furtak et al., 2012). Alternatively, it 

might not be the instructional guidance by the teacher itself but the systematic feedback on students’ 

performance that is more frequent and closer aligned with the diferent activities of the inquiry process 

when the learning conditions are more teacher led.

Hence, a further review of inquiry-oriented activities might focus on the use and implementation of 

feedback and its efect on students’ learning. This is especially true for those activities for which repeated 

practice seems the dominant approach to foster students’ abilities, for instance, in case of identifying 

questions, formulating hypotheses or communication. In addition, metacognitive and epistemological 

knowledge, as sketched in the previous paragraph, could also be considered the other side of the coin 

of guidance and scafolding in inquiry, when identifying metacognition with self-scafolding (Holton 

& Clarke, 2006). From this perspective, NOS/NOSI and metacognitive aspects of inquiry might enable 

students to better develop and monitor their own inquiry activities. If this relation holds true, consid-

ering NOS/NOSI and metacognitive elements seems mandatory when teaching inquiry. Otherwise, 

students’ understanding and realisation of scientifc inquiry activities might remain bound to scafolds 

and other instructional triggers.
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In total, the detailed analysis of empirical studies both on the level of single inquiry activities as 

well as on the level of the construct of scientifc inquiry has provided complementary insights in this 

review. When taking a more holistic stance and asking the question how the diferent aspects could 

be condensed into a single picture of the construct, it seems obvious that the answer is not just about 

selecting and sequencing specifc inquiry activities. This point is certainly important, but has also been 

discussed extensively before (cf. Bell et al., 2010; Linn et al., 2004; National Research Council, 1996, 

2000, 2012; Pedaste et al., 2015). In summary, specifc inquiry activities are often considered closely 

corresponding to each other (e.g. carrying out an experiment and analysing the obtained data; creating 

models and developing explanations). These clusters of activities could be subsumed as phases of the 

inquiry process, including preparation, carrying out, as well as explaining and evaluating (cf. Pedaste  

et al., 2015). When considering several inquiry activities, these activities (and thereby also the clusters of 

activities) are commonly aligned in a circular sequence, indicating a reciprocal back and forth between 

the phases of preparing, carrying out and explaining and evaluating, respectively. Beyond the type, 

range and sequencing of specifc inquiry activities, this review has pointed out that a more holistic 

picture of scientifc inquiry also needs to provide a clear rationale about the relation of scientifc inquiry 

and other fundamental constructs, in particular scientifc concepts and knowledge as well as the NOS/

NOSI (cf. Figure 4). Regarding the role of scientifc concepts, the analytical schemes and rubrics used 

in the diferent studies to evaluate students’ performance in specifc inquiry activities incorporate sci-

entifc knowledge sometimes to a greater, sometimes to a lesser extent, i.e. the studies are providing 

a more generic or more substantive perspective on the inquiry activity. The implications of this shift in 

the perspective are seldom discussed (Kelly et al., 1998). Most research has focused on using scientifc 

inquiry as a means to foster students’ conceptual understanding. Research on how students make use 

of their conceptual knowledge in inquiry settings, however, seems to be an unexpectedly rare case. 

There are also few studies that examine the signifcance of students’ understandings of NOS/NOSI in 

inquiry settings. Here, a more thorough consideration of epistemic aspects in students’ inquiry could 

enable students to better develop and monitor their inquiry activities. So far, this support is mainly 

Figure 4. Aggregation of central aspects of the current review. Within scientific inquiry, specific activities (white boxes) are often 
considered in close correspondence to each other (indicated by black frames) and could be clustered in phases of the inquiry process 
(preparation, carrying out, explaining and evaluating). These phases are commonly aligned in a circular, interactive sequence (indicated 
by bolder arrows). Beyond the type, range and sequencing of specific inquiry activities (left side), research about scientific inquiry 
should be based on a clear theoretical rationale which comprises inquiry, content knowledge and NOS/NOSI.
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considered in terms of guidance by the teacher or the learning environment, partially also in terms of 

fostering students’ metacognition. However, a more thorough theoretical (cf. Cavagnetto et al., 2010) 

and empirical consideration of the interrelation between all three constructs could provide an impor-

tant expansion of the current perspective on research in scientifc inquiry, both regarding student 

performance and the teaching of inquiry.

Limitations

The limitations are generally related to the question of the comprehensiveness of the literature database 

for the review and thus to the search and selection procedure. A frst limitation is given by the selection 

of keywords for the literature search. Starting from an expansive defnition of scientifc inquiry, the frst 

step was to generate an initial database that was as comprehensive as possible. By searching in relevant 

databases, highly visible journals and reference lists of key publications, we sought to fnd the majority 

of important contributions to this feld of research. Nevertheless, including diferent or further keywords 

and considering diferent or further databases, journals and publications might have led to further rel-

evant publications. A specifc aspect of this frst limitation is related to the before-mentioned transition 

from scientifc inquiry to scientifc practices that started with the publication of the K-12 Framework for 

Science Education in 2012 (National Research Council, 2012). The scientifc practices are closely related 

to the activities of scientifc inquiry that formed the basis of the analyses in this review. Moreover, the 

time frame of the review ended in 2013. Nevertheless, including the term scientifc practices in the 

keywords might have led to additional entries.

A second limitation is that the sample of reviewed publications was almost exclusively drawn from 

peer-reviewed, research-oriented journals. This decision was made to ensure a certain level of quality of 

the reviewed contributions by relying on the journals’ policy to ensure a rigorous peer review process. 

However, focusing on this type of publications may have limited the scope of perspectives on scientifc 

inquiry. Reports, theses or contributions in practice- or teacher-oriented journals may have provided 

further operationalisations. Regarding the already large number of publications included in this review, 

however, a review of all inquiry-related publications may not have been achievable. This argument is 

also related to further decisions made in the literature search, as limiting the sample to contributions 

published within the last 15 years as well as papers published in English language. In this regard, we 

tried to be as transparent as possible by explicating the search process.

A third limitation is that this review focuses on students in schools and, thus, takes a certain perspec-

tive towards scientifc inquiry. As can be seen in Figure 2, numerous studies found by our keyword-based 

search in databases and journals were excluded because they focused either on students on the ter-

tiary level (19 studies) or on teacher education programmes and teacher professional development 

(69 studies; cf. Figure 2). Both areas are of course important and relevant but will probably defne and 

operationalise inquiry-oriented activities from a diferent epistemic and social stance. Further reviews 

addressing these two areas might provide complementary overviews about research on activities of 

scientifc inquiry with university students and teachers. Contrasting these diferent perspectives (school 

vs. university; students vs. teachers) might illustrate interesting changes and transitions in perspectives, 

but these contrasts were beyond the scope of this review.

Conclusions

This review intended to provide a systematic overview about empirical research on activities that are 

important constituents of the instructional approach of scientifc inquiry. The fndings frst and foremost 

illustrate that the variability found in the research literature with respect to the defnition and opera-

tionalisation of the holistic concept of scientifc inquiry is also refected at the level of single activities 

of the inquiry process.

Consequently, the research studies accumulated in this review can hardly be condensed to common 

lines of research, but difer according to numerous factors (e.g. setting, sample or goal). Moreover, the 
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operationalisations and descriptions of the investigated activities of scientifc inquiry as well as the 

consistency of their implementation difer considerably in depth, comprehensiveness and explicitness 

among studies. This makes comparisons – and thus the drawing of conclusions regarding the efective-

ness of inquiry teaching – difcult, if not impossible (Furtak et al., 2012; Schroeder et al., 2007). Although 

generally accepted, it seems necessary to repeatedly remind authors of research papers to defne and 

describe the underlying concepts of their studies as comprehensively as possible.

In a similar vein, the interplay between diferent assessment formats and the obtained results as 

indicators of students’ abilities in the diferent scientifc activities needs to be addressed more specif-

ically. Next to the conceptual discrepancies, the equivalence of results from diferent data sources is 

hardly investigated which additionally makes the comparison of fndings across studies difcult. The 

results of this review are thus necessarily more descriptive than explanatory.

Taking the diversity of the compiled fndings into account, this review can only be the frst step 

towards a discussion about a more coherent basis of scientifc inquiry. The necessity of such a coher-

ent basis is also refected in the recent shift in terminology from scientifc inquiry to scientifc prac-

tices (National Research Council, 2012). It has been argued that the main problem of teaching science 

through inquiry has been ‘the lack of a commonly accepted understanding of what it means to teach 

science through inquiry’ (National Research Council, 2012, p. 178). The professional practice of teaching 

science has been undermined by the lack of a clear defnition and communication of the activities that 

students should engage in. Shifting from teaching science as inquiry to teaching science as a practice 

thus aims to provide a ‘greater clarity of goals about what students should experience, what students 

should learn, and an enhanced professional language for communicating meaning’ (National Research 

Council, 2012, p. 179). However, clarifying the terminology – albeit an important aspect – will not be 

sufcient to clear up all questions, ambiguities and inconsistencies illustrated in this review.

In closing, the key fndings of this literature review can be seen on two levels, the rather atomistic 

level of the distinct inquiry activities and the more holistic level of scientifc inquiry. Regarding the 

level of the inquiry activities, research on scientifc inquiry is a vast feld. Conceptual saturation in terms 

of a predominant model can only be identifed for single activities, while research on other activities 

can mainly be characterised by diversity. Hence, further theoretical work as well as empirical research 

regarding the interplay of diferent inquiry activities as well as their individual contribution to the 

inquiry process as a whole is needed.

From the more holistic perspective, three aspects stand out: frst, a case for further research on more 

comprehensive implementations of inquiry-oriented activities can be made with regard to the sole 

implementation of few more or less distinct activities in numerous research articles included in this 

review. Here, both the students’ and the researchers’ perspectives should be addressed. The impression 

that conceptualisations of scientifc inquiry are an inconsistent accumulation of loosely connected 

activities might be partly attributed to the rather atomistic approach taken in this review, but it seems 

doubtful to us whether a more coherent picture would emerge using a more holistic approach.

Second, the interplay between scientifc concepts and inquiry activities seems less researched than 

commonly assumed. While numerous studies included tests on students’ conceptual knowledge, the 

analysis of the interplay is mainly correlational. A more integrated perspective seems necessary to 

actually understand the role of science in student inquiry.

Third, NOS/NOSI seems to hardly have found its way into research on scientifc inquiry, at least 

when regarding the results of this review that are of course bound to the review’s approach (in terms 

of selected literature databases, searched keywords and analytical methods; cf. Figure 2). Although 

some studies included measures of students’ epistemology or emphasised shortcomings in students’ 

interpretation of the function or purpose of specifc inquiry activities, the overall ratio of 5% marginalises 

the attention which this concept attracts in the reviewed empirical studies. This is to some extent in 

contrast to the works of, e.g. Sandoval (2003) or Duschl and Grandy (2012) who investigated epistemic 

aspects in the context of scientifc explanation and argumentation. In addition, the aspect of guidance 

is and has always been a major focus in research (and implementation) of inquiry-oriented activities 

(cf. Furtak et al., 2012). An important aspect for a future agenda might entail a better understanding of 
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the interplay and interrelation of diferent forms of instructional guidance and students’ understanding 

of NOS/NOSI and their meta-inquiry knowledge (to revert to the term meta-modelling knowledge from 

Schwarz & White, 2005). In the end, these aspects might be two sides of the same coin: both aim to 

support students in their inquiry, but the degree of independent agency alternates between instructor 

and student. Hence, a more systematic consideration of epistemic and metacognitive aspects into the 

teaching of inquiry might be more benefcial for students’ long-term learning and a good indicator to 

adjust the fading out of instructional guidance in the learning process.

Overall and despite its descriptive nature, we believe that the results of this review are valuable to 

enhance our understanding of scientifc inquiry since, unlike previous results, they for the frst time 

allow providing insights into the range of diferent operationalisations of activities of the inquiry pro-

cess in empirical research.

Note

1.  It is beyond the scope of this review to disentangle an additional unclear concept. The implications, however, 
to diferentiate between characteristics of scientifc knowledge and scientifc inquiry seem unclear, be it from a 
theoretical perspective or with regard to their separability in empirical investigations (Neumann, Neumann, & 
Nehm, 2011). Hence, in the following, the aspects of an ‘epistemology of science, science as a way of knowing, or 
the values and beliefs inherent to scientifc knowledge or the development of scientifc knowledge’ (Lederman, 
2006, p. 303) will be subsumed under the acronym NOS/NOSI, treating both as synonymous.
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