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Article

Absolute and Relative Measures
of Instructional Sensitivity

Alexander Naumann
Johannes Hartig

German Institute for International Educational Research (DIPF)

Jan Hochweber
University of Teacher Education St. Gallen (PHSG)

Valid inferences on teaching drawn from students’ test scores require that tests
are sensitive to the instruction students received in class. Accordingly, measures
of the test items’ instructional sensitivity provide empirical support for validity
claims about inferences on instruction. In the present study, we first introduce
the concepts of absolute and relative measures of instructional sensitivity.
Absolute measures summarize a single item’s total capacity of capturing effects
of instruction, which is independent of the test’s sensitivity. In contrast, relative
measures summarize a single item’s capacity of capturing effects of instruction
relative to test sensitivity. Then, we propose a longitudinal multilevel item
response theory model that allows estimating both types of measures depending
on the identification constraints.

Keywords:instructional sensitivity; multilevel IRT; differential item functioning

Researchers as well as policymakers regularly rely on student performance data
to draw inferences on schools, teachers, or teaching (Creemers & Kyriakides,
2008; Pellegrino, 2002). Yet valid inferences drawn from student test scores
require that instruments are sensitive to the instruction that students have received
in class (Popham, 2007; Popham & Ryan, 2012). Accordingly, measures of test
items’ instructional sensitivity may provide empirical support for validity claims
about the inferences on instruction derived from student test scores.
Instructional sensitivity is defined as the psychometric property of a test or a

single item to capture effects of instruction (Polikoff, 2010). Scores of instruc-
tionally sensitive tests are expected to increase with more or better teaching
(Baker, 1994). Students who received different instruction should produce dif-
ferent responses to highly instructionally sensitive items (Ing, 2008). Fundamen-
tally, instructional sensitivity relates to the observation of change in students’
responses on items as a consequence of instruction (Burstein, 1989). If item
responses do not change as a consequence of instruction, it may remain unclear
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whether teaching was ineffective or thetest was insensitive (Naumann, Hoch-
weber, & Hartig, 2014). To test the hypothesis of whether an item is instruc-
tionally sensitive, various measures have been proposed (see Haladyna & Roid,
1981; Polikoff, 2010). Most commonly,these item sensitivity measures are
based on item parameters, that is, item difficulty or discrimination (Haladyna,
2004).
According to Naumann, Hochweber, and Klieme (2016), each item sensitivity

measure refers to one of the three perspectives on how to test the instructional
sensitivity of items. From the first perspective, instructional sensitivity is con-
ceived as change in item parameters between two time points of measurement,
while from the second perspective instructional sensitivity is conceived as dif-
ferences in item parameters between at least two groups (e.g., treatment and
control groups or classes) within a sample. The third perspective is a combination
of the two preceding ones, which allows deriving measures addressing two facets
of item sensitivity: global and differential sensitivity. Global sensitivity refers to
the extent to which item parameters change on average across time. Differential
sensitivity refers to the variation of change in parameters across groups,
indicating an item’s capacity of detecting differences in group-specific learning.
Overall, these perspectives provide an elaborate framework for the measurement
of instructional sensitivity based on item statistics by highlighting the relevant
sources of variance: variance between (a) time points, (b) groups, and (c) groups
and time points. As item sensitivity measures rooted in different perspectives
target different sources of variance, they do not necessarily provide consistent
results (Naumann et al., 2014).
Yet the three perspectives are not sufficient for describing common charac-

teristics and distinctions of instructional sensitivity measures. Actually, instruc-
tional sensitivity measures referring to the same perspective may address two
essentially different hypotheses regarding item sensitivity: Some measures relate
to the hypothesis of whether an item is sensitive at all, that is,absolute sensitivity,
while others relate to the hypothesis of whether an item substantially deviates
from the test’s overall sensitivity, that is,relative sensitivity.
This additional distinction has important theoretical and practical implications

for the evaluation of instructional sensitivity. For example, studies have shown
that the most commonly applied approaches, the Pretest–Posttest Difference
Index (PPDI; Cox & Vargas, 1966) and differential item functioning (DIF)-based
methods (e.g., Linn & Harnisch, 1981; Robitzsch, 2009), are inconsistent in their
judgment of item sensitivity (Li, Ruiz-Primo, & Wills, 2012; Naumann et al.,
2014). One reason for this finding lies in the difference of the perspective taken
on instructional sensitivity by these approaches (Naumann, Hochweber, &
Klieme, 2016): While the PPDI focuses on change in item difficulties across
time points, DIF approaches focus on differences in item difficulty between at
least two groups of students (e.g., treatment groups or courses or classes) within a
sample. Yet another reason is that the approaches differ in the way they measure
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instructional sensitivity: While the PPDI is an absolute sensitivity measure, DIF
approaches provide relative measures of item sensitivity.
Thus, in the present study, we aim to contribute to the measurement frame-

work of instructional sensitivity by introducing the distinction between absolute
and relative measures. Absolute and relative measures may be distinguished
within each of the three perspectives on instructional sensitivity and provide
unique and valuable information on item functioning in educational assessments
when inferences on schools, teachers, or teaching are to be drawn. In the follow-
ing, we will first elaborate on the distinction of absolute and relative measures.
We will point out how absolute and relative measures relate to test sensitivity and
current approaches to the instructional sensitivity of items. Second, we will
provide a model-based approach that allows testing the hypothesis of whether
items are absolutely and/or relatively sensitive within a more general item
response theory (IRT) framework. For illustration purposes, we apply our
approach to simulated and empirical item response data. Finally, we will discuss
implications for the measurement of instructional sensitivity, test development,
and test score interpretation.

Extending the Measurement Framework of Instructional Sensitivity

Figure 1 depicts an extended measurement framework. The extended mea-
surement framework comprises the three perspectives as well as the two sensi-
tivity facets—global and differentialsensitivity—that can be distinguished
within the groups and time points perspective following Naumann and col-
leagues (2016). In addition, we draw the distinction between absolute and rela-
tive item sensitivity measures within each perspective, making explicit that two
different hypotheses regarding item sensitivity may be tested via absolute and
relative measures.
Absolute measures address the hypothesis of whether a single item is sensitive

to instruction. In principle, absolute measures summarize a single item’s total
capacity of capturing potential effects of instruction in terms of variation in item
parameters across time, groups, or both. Hence, absolute measures are expected
to approach zero the less sensitive an item is and depart from zero the higher the
item’s sensitivity to instruction is.
In contrast, relative measures address the hypothesis of whether a single

item’s sensitivity substantially deviates from test sensitivity. Test sensitivity is
a concept that so far has only been implicitly used in the measurement of instruc-
tional sensitivity. In consistence with the predominant statistical notion of item
sensitivity (see Haladyna & Roid, 1981; Haladyna, 2004; Polikoff, 2010), test
sensitivity may be defined as the overall (i.e., unconditional) variation of
test scores across either time points, groups, or both (cf. Naumann et al.,
2016). Test sensitivity then is a prerequisite for what is commonly conceived
as the instructional sensitivity of a test, which typically refers to the proportion of
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variance in test scores explained by school, teacher, or teaching characteristics
(e.g., D’Agostino, Welsh, & Corson, 2007; Grossman, Cohen, Ronfeldt, &
Brown, 2014; Ing, 2008). Generally, test sensitivity captures the degree of item
sensitivity that is common to all the items within a test. Technically speaking, the
stronger the item sensitivity correlates across all test items, the higher the test
sensitivity. Accordingly, relative measures express the degree to which a single
item’s sensitivity differs from test sensitivity. More precisely, relative measures
are expected to approach zero the more an item’s sensitivity is in consistence
with test sensitivity and to be nonzero if the item’s sensitivity deviates from test
sensitivity.
In general, whether a specific item sensitivity measure is absolute or relative

depends on whether or not the underlying measurement model comprises one or
more parameters capturing test sensitivity. Absolute measures of sensitivity are
unconditional on test sensitivity while relative measures are conditional on test
sensitivity. That is, from each of the three perspectives, measures are obtainable
in two ways, either independently of (i.e., absolute) or depending on (i.e., rela-
tive) test sensitivity. As a result, there are eight different ways of measuring an

FIGURE 1.Extended measurement framework of instructional sensitivity comprising the
three perspectives, the two facets, and the eight absolute and relative sensitivity measures.
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item’s sensitivity in total: four ways based on absolute sensitivity measures and
four ways based on relative sensitivity measures (see Figure 1, last column).
However, not all of these ways have been applied so far in practice.

Absolute and Relative Measures From the Time Points Perspective

In practice, Cox and Vargas’s PPDI (1966) is the most prominent approach to
measuring item sensitivity when focusing on differences in item parameters
between time points of measurement. It is conceptually easy to understand and,
provided that longitudinal data are available, technically straightforward to
implement. The drawbacks are that PPDI does not account for differences
between learning groups, although it is reasonable to assume that content and
quality of teaching may vary between classes. Also, separation of instruction
effects from maturation is impossible if there is no untreated control group
(Polikoff, 2010).
Conceptually, the PPDI is conceived as the difference in difficulty of a single

item for instructed and uninstructed students (Polikoff, 2010). Technically, the
PPDI is calculated as the change in a single item’s difficultypbefore and after
instruction:

PPDI¼ppost ppre: ð1Þ

The bigger the change in item difficultypis, the potentially higher the item’s
instructional sensitivity. For example, an item with difficultiesppost¼0:6 and
ppre¼0:4 results in a PPDI¼0.6 0.4¼0.2. That is, the item became easier
over time and accordingly may be considered as sensitive from a between time
points perspective following the PPDI. Essentially, this is equivalent to the effect
of item-specific learning. As the extent of an item’s PPDI solely depends on the
proportions of students who get that very item correct at each time point of
measurement, the PPDI is an absolute sensitivity measure (Figure 1, Sensitivity
Measure 1).
Studies taking on a time points perspective have also regularly applied relative

item sensitivity measures. Actually, relative item sensitivity between time points
is better known as item parameter drift due to the teaching students were exposed
to and is commonly investigated using methods of DIF detection (e.g., DeMars,
2004; French, Finch, Randel, Hand, & Gotch, 2016). Methods of DIF detection
calculate item sensitivity measures conditional on test sensitivity. From the time
points perspective, test sensitivity may be conceived as the average change in
difficulty between time points of measurement across all items, which is com-
monly conceived as the effect of learning on the entire test. Relative item sensi-
tivity then relates to the extent that item-specific learning deviates from test
learning. If a single item changes in difficulty relatively lower or higher than
the test, the item is considered as being exposed to parameter drift or as being
sensitive, respectively (Figure 1, Sensitivity Measure 2). Still, relative sensitivity
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measures differing from 0 indicate a violation of measurement invariance
assumptions across time points (e.g., Meade, Lautenschlager, & Hecht, 2005).
To illustrate the principle and the relation of such relative measures to abso-

lute measures, we exemplarily formulate a relative version of the PPDI that
accounts for test sensitivity. This relative PPDI is conceptually identical to item
difficulty drift in longitudinal settings and is calculated as the change in a single
itemi’s difficultypbefore and after instruction centered on the average change in
the difficulty of the test:

PPDIrel¼pi;post pi;pre ðp:;post p:;preÞ; ð2Þ

wherep:;postandp:;preare the average item difficulties at posttest and pretest,

respectively. In contrast to Cox and Vargas’s original PPDI, the relative version
not only utilizes the responses to a single item but the response data of all test
items and is nonzero when item sensitivity deviates from test sensitivity and 0
if not.
Remember the PPDI example above. Suppose the average item difficulties in

the test arep:;post¼0:5 andp:;pre¼0:3, respectively. Then, the relative PPDI of

the example item is PPDIrel¼0:2 ð0:5 0:3Þ¼0. That is, although the item
has become easier over time, its change in difficulty does not deviate from the
learning on the test. Thus, the item is insensitive from a between time points
perspective following the relative sensitivity measure.

Absolute and Relative Measures From the Groups Perspective

Absolute sensitivity from the groups perspective refers to the item-wise var-
iation of (unconditional) group-specific item parameter estimates. The higher
item parameter variation across learning groups, the higher an item’s sensitivity.
Yet, as to our knowledge, such a measure has not been applied in practice so far
(Figure 1, Sensitivity Measure 3).
In examinations focusing on differences in item parameters between learning

groups, item sensitivity has traditionally been measured in terms of uniform DIF
(e.g., Clauser, Nungester, & Swaminathan, 1996). As a result, and similar to
longitudinal settings, instructional sensitivity has on the one hand been perceived
as a violation of measurement invariance assumptions impairing test fairness if
not all students within a sample have received comparable instruction (Geisinger
& McCormick, 2010). On the other hand, this “instructional bias” (Linn &
Harnisch, 1981, p. 117) between groups of students has been regarded as
beneficial when drawing inferences on teaching (Linn & Harnisch, 1981;
Naumann et al., 2014).
Conceptually, DIF approaches to instructional sensitivity from the groups

perspective provide relative measures of item sensitivity due to the conditioning
of item parameters on test sensitivity. Test sensitivity from the groups perspec-
tive refers to the variation of group-specific ability parameters, which basically
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depends on the covariance of group-specific item difficulty estimates uncondi-
tional on ability. That is, if group-specific item difficulty correlates across items,
then the between group variance in test scores (i.e., test sensitivity) becomes
larger.
DIF approaches from the groups perspective focus on cross-sectional data and

may become computationally rather demanding when accounting for multilevel
structures (multilevel DIF; Meulders & Xie, 2004). Recent multilevel DIF
approaches utilize classroom membership as a proxy for the manifold sources
of differences in instruction that students may have received (Robitzsch, 2009;
see also Naumann et al., 2014). Robitzsch’s multilevel DIF approach models the
probability of a correct response of personiin classcon itemkas follows:

logitðP½Xcik¼1Þ ¼ycþyci bck; ð3Þ

whereycis the average ability of classc, andyciis the individual deviation in
ability from the respective class mean. The item parameterbckis the classroom-
specific difficulty of itemk. All parameters are assumed to be normally
distributed:

yc*Nð0;l
2Þ;

yci*Nð0;s
2Þ;

bck*Nðbk;u
2
kÞ:

ð4Þ

Robitzsch suggests using the standard deviationukof the classroom-specific item
parameter distribution as an item sensitivity measure: The more an item’s diffi-
culty varies across classes, the potentially higher its instructional sensitivity.
As this variation is expressed conditional on the classroom ability parameters

yc, standard deviationukrepresents a multilevel DIF effect, that is, the extent of
item difficulty variation between groups after variation in overall classroom
ability has been taken into account. Consequently, the magnitude of (multilevel)
DIF can be regarded as arelativemeasure of item sensitivity, and the variation of
the classroom ability parametersycmay be conceived as a measure of test
sensitivity from the groups perspective.

Absolute and Relative Measures From the Groups and Time Points Perspective

Recently, Naumann et al. (2014) combined the PPDI and Robitzsch’s multi-
level DIF model in the LMLDIF approach to instructional sensitivity. The advan-
tage of the LMLDIF approach is that it integrates both perspectives and provides
two measures for item sensitivity, one dedicated to global sensitivity and one
dedicated to differential sensitivity. Information on both global and differential
sensitivity allow for a more complete judgment of item sensitivity, which may be
partially incomplete or even misleading if one facet of sensitivity is neglected
(Naumann et al., 2014).
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As a combination of PPDI and multilevel DIF, the LMLDIF approach requires
longitudinal data from students within the same set of classes at (at least) two
time points of measurement. Similar to the multilevel DIF approach, the
LMLDIF approach assumes that meaningful differences in the instruction that
students have received are due to their classroom membership. Additionally, the
average classroom ability is assumed to be equal, namely 0, across time. This
assumption, on the one hand, serves as an identification constraint and, on the
other hand, ensures that all growth across time is reflected in the item difficulty
parameters. Accordingly, the item difficulties are allowed to vary across classes
and time points. Following the LMLDIF approach, the probability of a correct
response of personiin classcon itemkat time pointtis given by

logitðP½Xtcik¼1Þ ¼ytcþytci btck; ð5Þ

whereytcis the classroom-level ability component of classcat time pointt,ytciis
the time point-specific individual ability component of personi, andbtckis the
time point and classroom-specific difficulty of itemk. The desired item sensi-
tivity measures are calculated based on thebtckestimates for two time pointst¼
1 andt¼2 in terms of classroom-specific pretest–posttest differences (PPD):

Dbck¼b2ck b1ck: ð6Þ

The classroom-specific PPDsDbckare treated as normally distributed. The mean
ofDbckacross classes, the so-called average PPD, serves as a measure for an
item’s global sensitivity, and the variance ofDbckacross classes, the PPD var-
iance, serves as a measure for an item’s differential sensitivity. Like the PPDI,
the average PPD does not depend on test-level (global) sensitivity. Since the
average classroom ability is fixed to 0 at both time points, all learning progress
on the items across groups is reflected in the mean ofDbck. Hence, the average
PPD represents an absolute measure of global sensitivity. Nevertheless, the
PPD variance captures differential sensitivity conditional on the variation
of classroom-level ability. Hence, itsmagnitude is relative to the test-level
(differential) sensitivity.
Despite its conceptual advantages compared to the singular application of

PPDI or multilevel DIF, the LMLDIF approach has three major drawbacks. First,
the change in item difficulties, and thus the foundation for the item sensitivity
measures, is not part of the probability model itself. Instead, the quantities of
interest are calculated based on the time point and classroom-specific item para-
meters. Consequently, whether global or differential sensitivity measures are
statistically meaningful can only be evaluated indirectly and not by imposing
constraints on the parameters of interest, that is, the mean and variance ofDbck
(cf. Naumann et al., 2014). Second, correlations of initial status and change in
parameter values remain unconsidered. Finally, although the model integrates
PPDI and DIF approaches, it does not generalize to a broader view on items’
(instructional) sensitivity. For example, there is no explicit consideration and
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convenient way of switching between absolute and relative measures for the
different facets of instructional sensitivity.
Thus, in the following, we will propose a more general and straightforward

model-based approach to measuring item sensitivity within an IRT framework.
Our model aims at the evaluation of item sensitivity from a groups and time
points perspective, yet reduces to the groups or to the time points perspectives if
only one group or one time point is considered. When both longitudinal and
multigroup data are available, our model provides absolute and/or relative mea-
sures for global and differential sensitivity, respectively. In contrast to the
LMLDIF approach, our model allows users to switch between absolute and
relative sensitivity measures by simply altering the identification constraints
imposed on the model parameters. That way, the modelbasically allows
estimating all types of sensitivity measures depicted in Figure 1.

Modeling Approach

We start by advancing the LMLDIF approach to a more general longitudinal
multilevel IRT (LMLIRT) model that is not necessarily restricted to DIF and
directly accounts for all parameters of interest. Similar to the multilevel DIF and
LMLDIF approaches, we build the LMLIRT model under the assumption that
meaningful differences in instruction students have received are tied to their
classroom membership. Thus, item parameters are allowed to vary across time
points and across classes. In contrast to the LMLDIF approach, we model initial
status and classroom-specific change in item difficulty directly in a generalized
linear mixed-model framework using person, item, and person-by-item covari-
ates (Rijmen, Tuerlinckx, De Boeck, & Kuppens, 2003; van den Noortgate, De
Boeck, & Meulders, 2003), allowing for correlations between initial status and
change.
Following our approach, the probability of a correct response of individualiin

classcon itemkat time pointt(1,...,T) is given by

logitP½Xtcik¼1 ¼

XT

u¼1

qtu ytcþytci btck ; ð7Þ

whereqtuis element of a predefinedT Tlower triangular matrixQof ones
(qtu¼1 whenu tand 0 otherwise), ensuring that subsequent time points do
not contribute to response probabilities at earlier ones:

Q¼

1 0 0
..
. ..
. ..

.

1 1

2

4

3

5: ð8Þ

Accordingly, at time pointt¼1,ytcdenotes the initial average ability of classc
andytciis the initial individual deviation in ability of personifrom the respective
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classroom ability component. For each following time pointt>1,ytcandytci
denote the change in classroom and individual ability components from the
preceding time pointt 1. Parametersytcandytciare assumed to be mutually
independent and multivariate normally distributed with time point–specific mean
ytand covariance matricesΛandΣ, respectively:

ytc*MNðyt;ΛÞ;
ytci*MNð0;ΣÞ:

ð9Þ

Analogously,btckis the initial classroom-specific difficulty of itemkat time
pointt¼1 and the item’s classroom-specific change in difficulty for each time
pointt>1. Similar to the classroom and individual ability parameters,
classroom-specific item parametersbtckare assumed to be multivariate normally
distributed with time point and item-specific mean vectorbtkand item-specific
covariance matrixΦk:

btck*MNðbtk;ΦkÞ; ð10Þ

wherebtkdenotes the average initial item difficulty across classes of itemkat
time pointt¼1 and the item’s average change in difficulty parameters for each

time pointt>1. The diagonal elements ofFk, the variance parametersf
2
tk,

represent a single itemk’s variation of initial difficulty parameters across classes
at time pointt¼1 and the variation of the item’s change in difficulty parameters
across classes for each time pointt>1. That is, in contrast to the LMLDIF
approach, change in and variation of classroom-specific item parameters are not
calculated post hoc but estimated directly within the LMLIRT model.
In consequence, the distribution of the classroom-specific item parameters

btckdirectly provides information about the global and differential sensitivity
of each item. While the components of the mean vectorbtkrelate to global

sensitivity, the variance componentsf2tkrelate to differential sensitivity. Ifbtk
is nonzero for a time pointt>1, the average change in item difficulty is either
negative or positive across classes, and thus the item can be seen as globally

sensitive within this time span. Accordingly, the higherf2tkis, the higher itemk’s
differential sensitivity within this period.
Combining the information on global and differential sensitivity allows for

judging a single item’s sensitivity based on the 2 2 typology presented in the
LMLDIF approach (see Naumann et al., 2014), yet additionally, the LMLIRT
model allows for testing the two hypotheses related to absolute and relative item
sensitivity directly. As indicated above, the LMLIRT model in its general form is
unidentified. As any other IRT model, the LMLIRT model can be identified by
imposing constraints on the item difficulty or ability parameters. Depending on
the identification constraints chosen, the LMLIRT model provides absolute or
relative measures of item sensitivity. In the following, we will describe how to
identify and thus how to obtain absolute and relative measures of global and
differential sensitivity in more detail.
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Absolute and Relative Measures of Instructional Sensitivity in the
LMLIRT Model

There are several ways to identify the LMLIRT model. An overview of the
constraints that are relevant for obtaining absolute and relative measures of
global and differential sensitivity is available in Table 1. Some of these con-
straints might lead to assumptions that are rather unrealistic for models that are
commonly used for scaling in education research. However, these constraints are
a necessary requirement for determining the instructional sensitivity of items
(Naumann et al., 2014).

Absolute sensitivity.To determine a specific item’s absolute sensitivity, the
item’s sensitivity measure may not depend on the global or differential sensitiv-
ity of the test. That is, in case of the LMLIRT model, the global and differential
sensitivity measures have to be unconditional on classroom ability and its varia-
tion, respectively. With respect to global sensitivity, the model is identified and
provides absolute measures when fixing all componentsytof the mean vector of
the classroom ability parameters to 0. This constraint is, in principle, equivalent
to the procedures in the PPDI or the LMLDIF approach. In consequence, the
average ability growth in the sample is entirely reflected in the item parameters.
Analogously, obtaining absolute measures of differential sensitivity requires

constrainingΛ, that is, the variance componentsl2tof the classroom ability
distribution and their covariances, to 0. Taken together, having the LMLIRT
model identified and providing solely absolute measures of global and differen-
tial sensitivity simply requires fixing all classroom ability parametersytcto 0.

Relative sensitivity.To determine a single item’s relative sensitivity, the item’s
sensitivity has to be estimated conditional on the classroom ability estimates.
Thus, in contrast to estimating absolute measures, determining an item’s relative

TABLE 1.
Constraints on the LMLIRT Model for Obtaining Absolute and Relative Measures
of Sensitivity

Differential Sensitivity

Global Sensitivity

Absolute Relative

Absolute yt¼0;Λ¼0 btK¼
PK 1

k¼1

btk;Λ¼0

Relative yt¼0 btK¼
PK 1

k¼1

btk

Note.yt¼mean classroom-level ability at time pointt;Λ¼person-side classroom-level covariance
matrix;btk¼average difficulty or change in difficulty of itemkat time pointt.
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sensitivity requires unconstrained classroom ability parameters. Accordingly,
instead of fixing classroom ability parameters, item difficulty parameters have
to be constrained for identification purposes. With respect to global and differ-
ential sensitivity, the LMLIRT model provides relative measures whenytcis
estimated freely and the item difficulty parameterbtKfor the last item K in the
test is constrained such that the average difficulty of the test equals 0 at each
time point:

btK¼
XK 1

k¼1

btk: ð11Þ

Alternatively, in the case of random items (De Boeck, 2008), the time point–
specific mean of the item difficulty parameterbtkdistribution,bt, can be fixed to
0. In either scenario, the change that is common to all items will be reflected inyt
for each time pointt>1. Then, the parametersbtkare measures of the items’
relative global sensitivity. Similarly, the contribution to classroom-level differ-

ences that is common to all items will be reflected inl2t. Therefore, the magni-

tude of the item-side variance componentsf2tk, which capture the remaining
item-specific variation in item difficulty between classrooms, can be conceived
as the items’ relative differential sensitivity.

Application to Data

For demonstration purposes, we applied the LMLIRT model to two data sets.
First, we used simulated data to illustrate key features of absolute and relative
measures. In the literature, the magnitude of sensitivity measures is commonly
used as an indicator of an item’s degree of instructional sensitivity, regardless of
whether the measures are absolute or relative. Yet high absolute sensitivity does
not necessarily translate to high relative sensitivity and vice versa. Suppose we
assemble a test from items with a varying degree of absolute sensitivity, then the
magnitude of relative sensitivity will be influenced by the degree items’ absolute
sensitivity correlates across the entire test. If absolute sensitivity is highly con-
cordant across test items, the magnitude of relative measures should be low, as
none of the items deviates meaningfully from test sensitivity. In contrast, relative
sensitivity may be high for items deviating meaningfully from test sensitivity,
regardless of their absolute sensitivity. We illustrate this relationship for mea-
sures of differential sensitivity using three extreme settings, one setting where
item sensitivity is highly concordant, one where item sensitivity is uncorrelated,
and one where items are absolute differentially insensitive. For measures of
global sensitivity, the relationship is more straightforward as can be seen from
the PPDI example provided above.
Afterward, we conduct an exemplary analysis of the absolute and relative

global and differential sensitivity of empirical data using the LMLIRT model.
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Applying the LMLIRT to empirical data, we try to provide empirical evidence
supporting the claim that our analyses are adequate for real applications. The
focus of the analyses lies on the intersection of absolute and relative measures
with global and differential sensitivity. We expect that absolute and relative
measures coincide (or differ) as a function of the concordance of items’ absolute
sensitivity measures. That is, if an item’s absolute sensitivity is high and in
accordance with the common change in classroom-specific difficulty estimates,
we expect the item’s relative sensitivity measures to be low. If the item’s change
in classroom-specific difficulty estimates is unrelated to the common change, we
expect the item’s relative sensitivity measures to coincide with the absolute
measures.
All analyses were carried out in a Bayesian framework using R (R Devel-

opment Core Team, 2008), JAGS 4.1.0 (Plummer, 2003), and the runjags
package version number 2.0.4-2 (Denwood, in press). The estimation method
was Markov chain Monte Carlo (MCMC). To estimate the LMLIRT model,
we chose Wishart distributions withTþ1 degrees of freedom and scale
matrix set to identity as priors for theinverse of the covariance matricesΣ,
Λ,andΦt, resulting in vague priors for the matrices’ off-diagonal elements
(Gelman et al., 2013). As recommended by Gelman and Hill (2006), we
assumed flat normal distributions with mean 0 and variance 10,000 as priors
for the means of the classroom-level ability distributions and highest level of
the item difficulty distributions. Initial values were randomly drawn from the
prior distributions by JAGS.
For each of the analyses, we ran four Markov chains with 30,000 iterations

each and discarded the first 5,000 iterations as burn-in. To reduce autocorrela-
tion, we only used every 10th iteration for the analyses. Convergence was

checked via visual inspection of trace plots and the Gelman–RubinR̂statistic.
Below, we summarized parameter posterior distributions in terms of point esti-
mates (i.e., maximum a posteriori estimates) followed by the corresponding
Bayesian credible intervals (BCI) in square brackets.

Simulation Data Example

Data generation.One simulated data set for two time points of measurement
(pretest–posttest) was generated in R based on the LMLIRT model. The simula-
tion was set up as follows: First, individual ability parametersðytkvÞfor 100
classes with 24 students each were randomly drawn from univariate standard
normal distributions. That is, correlation of initial status and growth of individual
ability was fixed to 0. Each classroom’s average ability at the pretest as well as
the change in classroom abilityðytkÞacross time were constrained to 0. Second,
we prepared three sets of items (Sets A–C) with 20 items each. The initial
(pretest) item difficultiesðb1iÞwere chosen to be equidistant, ranging from
1.5 to 1.5 logits around the mean of the ability distribution. That is, initially,
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there was no variation of item difficulties across classes. We assumed the average
change in item difficulty across classesðb2iÞ, that is, the indicator of global
sensitivity, to be equal and 0 for all items.
The item Sets A, B, and C varied in their degree of absolute differential

sensitivityðf22iÞ, that is, in the variation of change in the item difficulties across
classrooms, and in the correlation among the classroom-specific change in item
difficulty parametersðb2kiÞ. While the items within the Sets A and B were

differentially sensitiveðf22i¼1Þ, the items within Set C remained equally dif-

ficult in each classroomðf22i¼0Þ. Additionally, the items of Set A exhibited
high correlations ofb2kiwithr¼:95, meaning that classes with high improve-
ment on 1 item also highly improved on the other items, while these correlations
were fixed to 0 in Set B. In Set C, classroom-specific change parameters were

also uncorrelated due to the lack of variation across classesðf22i¼0Þ. Finally,
we generated item responses based on the person and item parameters using the
rbinom function in R.
To demonstrate the distinctions of absolute and relative measures of instruc-

tional sensitivity, we applied the LMLIRT model to four different sets of items
put together from the aforementioned item Sets A through C: (a) the 20 items of
Set A, (b) the 20 items of Set B, (c) 15 randomly drawn items from Set A
combined with 5 randomly drawn items from Set B, and (d) 15 randomly drawn
items from Set A combined with 5 randomly drawn items from Set C. These
newly combined item sets were each analyzed twice. First, the covariance matrix
Λwas fixed to 0 to estimate measures of absolute differential sensitivity, and
second, all elements ofΛwere estimated freely to obtain measures of relative
differential sensitivity, corresponding with the constraints depicted in Table 1.

Results.Figure 2 displays the simulation results. Applying the LMLIRT model to
the highly absolute differentially sensitive items of Set A, relative measures
appear low as sensitivity is concordant across items (Figure 2a). In contrast, the
uncorrelated items of Set B are highly differentially sensitive according to both
sensitivity measures (Figure 2b). Mixing items of Sets A and B yields relative
measures of differential sensitivity higher for those items whose sensitivity is
unrelated to the rest of the items (i.e., items from Set B; Figure 2c). This is in line
with expectations, as these items’ differential sensitivity is not captured by the

corresponding test sensitivity parameterðl2tÞ, which rather captures the common
change in difficulty across the items from Set A. Finally, mixing items of Set A
and invariant items from Set C, the invariant items appear relatively differential
sensitive despite being absolutely insensitive (Figure 2d). The reason corre-
sponds to the differences in relative sensitivity observed in the aforementioned
condition. The invariant items from Set C deviate strongly in their differential
sensitivity from the variant items of Set A, which additionally are highly corre-

lated. In consequence,t2tcaptures the common change in difficulty across the
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items, resulting in a low relative differential sensitivity measure for items from
Set A, while the items from Set C deviate very strongly from the common
change, that is, test sensitivity, as expressed by high relative differential
sensitivity measures.

Real Data Example

For the exemplary analysis of empirical item responses, we used data from the
German DESI large-scale assessment study (DESI-Konsortium, 2008). DESI
investigated the development of students’ language competencies and language
instruction in Grade Level 9 of German secondary schools during the school year
2003–2004. The target population was all German ninth graders attending a regular
secondary school type (i.e., all school types except special needs schools). To
reflect effects of instruction, the tests in DESI were aligned with the curricula of
German as native and English as a foreign language in the ninth grade. Data were
collected from representative samples from all 16 German federal states. For
demonstration purposes, we focused on a subsample from the German lower
secondary schools comprising 3,613 students in 135 classes.

Method.We exemplarily applied the LMLIRT model to a language awareness
test comprising 34 items, administered at the beginning and the end of the school
year (Eichler, 2007). The items were administered in a multimatrix testlet design
with anchoring. On average, eight students per class received the same item at
one time point. No student received the same item twice. With the exception of 1
item, all items were scored dichotomously as either correct or incorrect. For the
analysis, score categories of the polytomous item were recoded into two dichot-
omous step indicators, defining the respective step functions in a cumulative
approach (Agresti, 1990).
Before applying the LMLIRT model, we evaluated item fit to a two-level one-

parameter logistic model via infit statistics. Infit statistics were calculated fol-
lowing Wright and Masters’s (1990) study. Fit was acceptable for all items
including the dichotomous step indicators with weighted mean square values
ranging from 0.88 (0.84, 0.93) to 1.11 (1.07, 1.14) at pretest and from 0.87
(0.82, 0.93) to 1.15 (1.03, 1.30) at posttest (cf. Wright & Linacre, 1994). Latent
intraclass correlation of ability parameters was .23 (.18, .29) at pretest and .22
(.18, .28) at posttest.
In addition to the LMLIRT analyses, we checked whether the extent of global

and differential sensitivity found in DESI data was statistically meaningful. That
is, each item’s absolute and relative measures were checked for statistical impor-
tance. Absolute and relative global sensitivity was judged based on the 95%BCI
corresponding to the sensitivity measureb2i, considering an item as insensitive if
the interval comprised 0 and sensitive if it did not. We checked items’ absolute

and relative differential sensitivity, that is, the variance componentsf22i,
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following a procedure by Verhagen and colleagues (Verhagen & Fox, 2013;
Verhagen, Levy, Millsap, & Fox, 2015). Verhagen and colleagues utilize the
Savage–Dickey density ratio to compute Bayes’s factors for the null hypothesis

of invariance. As neither the prior nor the posterior distribution off22imay
comprise 0, the null hypothesis is defined by an “about equality” constraint. That
is, the procedure provides Bayes’s factors based on the cumulative probabilities
under the prior and the posterior distributions below an a priori set thresholdd:

BF01¼
pðf22i<djH1;XÞ

pðf22i<djH1Þ
; ð12Þ

with observed responsesX. Then, a Bayes’s factor larger than 3 is considered as
substantial support for the null hypothesis, while a Bayes’s factor smaller than
0.33 is considered as substantial support for the alternative hypothesis, pointing
to a statistically meaningful variance across groups. For our exemplary analyses
of the DESI item response data, we chosed¼0:0225, corresponding to a stan-
dard deviation of 0.15 on the latent scale.

Results.An MCMC estimation yielded good convergence withR̂approximately
1.00 for all model parameters. Table 2 provides the estimation results for the
absolute global and differential sensitivity measures of DESI items. Absolute
global sensitivity ranged from 1.60 to 1.30 and was statistically meaningful in
30 items. That is, 5 items’ change in difficulty was nondirectional across classes,
as the corresponding BCIs comprised 0. This means that 29 items became easier
over time, 5 items remained equally difficult, and 1 item became harder over the
school year. Absolute differential sensitivity ranged from 0.13 to 0.59. Bayes’s
factors supported the hypothesis of variance in 27 items. That is, item-specific
learning varied across classes in 27 items, while learning was equal on 8 items. In
summary, 4 items were absolutely insensitive, 4 items were absolutely globally
sensitive, and 27 items were absolutely globally and differentially sensitive.
None of the items was absolutely differentially sensitive only.
Relative sensitivity measures are provided in Table 3. Relative global sensi-

tivity ranged from1.07 to 1.84. As indicated by BCIs, 15 items’ sensitivity did
not deviate statistically meaningful from (global) test sensitivity, meaning that
20 items function differently than those 15 that are in accordance with test
sensitivity. More specifically, 6 items’ change was relatively smaller (i.e., more
negative) than test sensitivity, while 11 items’ change was relatively higher
(i.e., less negative). Relative differential sensitivity ranged from 0.12 to 0.56.
Bayes’s factors labeled 31 items’ variance as statistically meaningful, indi-

cating that these items’ sensitivity differed from test sensitivity. Combining the
information on relative global and relative differential sensitivity, 4 items were
relatively insensitive, 11 items were solely relatively differentially sensitive, and
20 items were relatively globally and differentially sensitive. That is, 4 items
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TABLE 2.
Absolute Measures of Item Sensitivity for DESI Items

Item

b2i f22i

MAP (SD) 95%BCI MAP (SD) 95%BCI BF01

1 0.32 (0.10) [0.53, 0.12] .48 (.18) [0.20, 0.86] .28
2 0.00 (0.10) [0.19, 0.20] .34 (.14) [0.12, 0.65] .21
3 0.11 (0.10) [0.29, 0.08] .36 (.15) [0.13, 0.70] .19
4 0.64 (0.10) [0.81, 0.45] .24 (.12) [0.10, 0.52] .03
5 0.44 (0.10) [0.65, 0.21] .59 (.20) [0.27, 1.05] .08
6 0.33 (0.10) [0.58, 0.13] .37 (.21) [0.10, 0.87] .08
7 1.01 (0.10) [1.19, 0.81] .28 (.14) [0.10, 0.60] .00
8 0.55 (0.10) [0.73, 0.36] .12 (.06) [0.05, 0.28] .11
9 1.30 (0.20) [0.99, 1.68] .30 (.27) [0.07, 1.00] .06
10 0.64 (0.10) [0.95, 0.39] .44 (.23) [0.15, 0.97] .02
11 1.47 (0.10) [1.77, 1.24] .26 (.17) [0.08, 0.67] .11
12 1.23 (0.10) [1.45, 1.02] .45 (.18) [0.19, 0.88] .34
13 1.60 (0.10) [1.83, 1.40] .36 (.18) [0.12, 0.77] .04
14 0.78 (0.10) [1.04, 0.51] .26 (.15) [0.09, 0.63] .15
15 0.20 (0.10) [0.38, 0.02] .25 (.11) [0.10, 0.51] .01
16 0.64 (0.10) [0.84, 0.46] .26 (.12) [0.09, 0.54] .11
17 0.94 (0.10) [1.13, 0.75] .30 (.14) [0.12, 0.63] .96
18 1.30 (0.10) [1.49, 1.11] .18 (.09) [0.07, 0.40] .07
19 0.79 (0.10) [1.08, 0.53] .41 (.27) [0.12, 1.09] .31
20 0.06 (0.20) [0.39, 0.51] .49 (.58) [0.09, 1.99] .35
21 0.38 (0.20) [0.80, 0.00] .40 (.48) [0.08, 1.63] .04
22 0.72 (0.10) [0.90, 0.53] .14 (.07) [0.06, 0.32] .11
23 0.48 (0.10) [0.68, 0.27] .20 (.10) [0.08, 0.45] .21
24 0.34 (0.10) [0.55, 0.13] .15 (.08) [0.06, 0.34] .04
25 0.55 (0.20) [0.86, 0.26] .42 (.30) [0.10, 1.15] .36
26 0.39 (0.10) [0.54, 0.23] .16 (.07) [0.07, 0.33] .16
27 0.48 (0.10) [0.64, 0.31] .14 (.07) [0.06, 0.30] .39
28 0.21 (0.10) [0.39, 0.02] .15 (.08) [0.06, 0.35] .00
29 0.47 (0.10) [0.64, 0.29] .16 (.08) [0.07, 0.35] .00
30 0.94 (0.10) [1.13, 0.71] .24 (.14) [0.08, 0.59] .18
31 0.54 (0.10) [0.73, 0.36] .16 (.08) [0.06, 0.35] .40
32 0.96 (0.10) [1.17, 0.74] .24 (.15) [0.07, 0.61] .00
33 0.12 (0.10) [0.32, 0.09] .25 (.13) [0.08, 0.56] .55
34 0.01 (0.10) [0.18, 0.15] .14 (.07) [0.06, 0.32] .48
35 0.32 (0.10) [0.51, 0.15] .29 (.13) [0.11, 0.57] .27

Note. MAP¼maximum-a-posteriori estimate;SD¼standard deviation of the posterior mean; BCI¼
Bayesian credible interval; BF01¼Bayes’s factor in favor of the null hypothesis of invariance.
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TABLE 3.
Relative Measures of Item Sensitivity for DESI Items

Item

b2i f22i

MAP (SD) 95%BCI MAP (SD) 95%BCI BF01

1 0.20 (0.10) [0.00, 0.42] .48 (.18) [0.19, 0.88] .29
2 0.51 (0.09) [0.34, 0.71] .31 (.14) [0.11, 0.62] .06
3 0.42 (0.1) [0.24, 0.62] .39 (.16) [0.15, 0.73] .16
4 0.10 (0.09) [0.28, 0.08] .21 (.10) [0.09, 0.46] .65
5 0.09 (0.11) [0.12, 0.30] .56 (.20) [0.26, 1.02] .00
6 0.18 (0.12) [0.05, 0.40] .35 (.20) [0.10, 0.83] .46
7 0.47 (0.09) [0.67, 0.30] .24 (.12) [0.09, 0.53] .00
8 0.03 (0.09) [0.21, 0.15] .12 (.06) [0.06, 0.27] .41
9 1.84 (0.18) [1.52, 2.21] .28 (.25) [0.07, 0.93] .22
10 0.11 (0.14) [0.39, 0.16] .36 (.20) [0.11, 0.83] .00
11 0.96 (0.13) [1.22, 0.71] .24 (.16) [0.07, 0.62] .00
12 0.68 (0.11) [0.89, 0.47] .43 (.18) [0.15, 0.86] .10
13 1.08 (0.11) [1.29, 0.87] .35 (.16) [0.12, 0.72] .00
14 0.23 (0.13) [0.49, 0.02] .26 (.15) [0.08, 0.60] .00
15 0.34 (0.09) [0.15, 0.50] .22 (.11) [0.09, 0.48] .20
16 0.12 (0.09) [0.29, 0.06] .22 (.11) [0.08, 0.48] .00
17 0.42 (0.09) [0.60, 0.24] .27 (.13) [0.09, 0.57] .10
18 0.77 (0.09) [0.95, 0.59] .17 (.09) [0.07, 0.38] .01
19 0.26 (0.14) [0.55, 0.02] .32 (.25) [0.09,0 .95] .00
20 0.63 (0.21) [0.19, 1.04] .39 (.54) [0.08, 1.83] .11
21 0.16 (0.20) [0.22, 0.54] .36 (.46) [0.08, 1.60] .02
22 0.19 (0.09) [0.36, 0.00] .14 (.07) [0.06, 0.32] .00
23 0.06 (0.10) [0.14, 0.25] .19 (.10) [0.07, 0.41] .05
24 0.21 (0.10) [0.01, 0.42] .15 (.07) [0.06, 0.32] .30
25 0.05 (0.14) [0.32, 0.24] .31 (.23) [0.09, 0.88] .19
26 0.14 (0.08) [0.02, 0.30] .16 (.07) [0.07, 0.34] .07
27 0.05 (0.08) [0.11, 0.22] .13 (.07) [0.06, 0.31] .41
28 0.32 (0.10) [0.13, 0.51] .15 (.08) [0.06, 0.34] .02
29 0.06 (0.09) [0.12, 0.22] .16 (.08) [0.06, 0.34] .17
30 0.39 (0.11) [0.61, 0.20] .24 (.15) [0.08, 0.60] .00
31 0.03 (0.09) [0.22, 0.15] .15 (.08) [0.06, 0.35] .32
32 0.42 (0.11) [0.65, 0.21] .28 (.18) [0.08, 0.70] .11
33 0.41 (0.11) [0.19, 0.60] .25 (.15) [0.09, 0.62] .18
34 0.52 (0.09) [0.35, 0.69] .15 (.07) [0.06, 0.31] .03
35 0.20 (0.09) [0.02, 0.38] .24 (.12) [0.09, 0.53] .00

Note. MAP¼maximum-a-posteriori estimate;SD¼standard deviation of the posterior mean; BCI¼
Bayesian credible interval; BF01¼Bayes’s factor in favor of the null hypothesis of invariance.

Absolute and Relative Measures of Instructional Sensitivity

696



were in accordance with test sensitivity, while 30 deviated from test sensitivity in
different ways.
Table 4 provides a comparison of the judgment of the DESI items’ sensitivity

based on the absolute and relative measures. Absolute and relative measures of
global sensitivity do differ not only in meaning but also in their judgment of the
DESI items’ sensitivity. While 28 items are sensitive following the absolute
measures, only 20 items are sensitive following the relative ones. Yet, even when
the judgment on an item’s global sensitivity appears to be in accordance, the sign
of the estimate differs. For example, Item 35’s absolute global sensitivity mea-
sure indicates a negative change in difficulty on average across classes, while the
change is still positive relative to the other items (see Tables 2 and 3). This means
that the item on the one hand is capable of detecting learning progress yet on the
other hand violates measurement invariance assumptions by deviating from test
sensitivity. In contrast, while absolute and relative measures of differential sen-
sitivity appear almost equally high and thus seem to coincide, support for the null
hypothesis of invariance from Bayes’s factors differs. In summary, absolute
measures identify 27 items as sensitive while 31 items are sensitive following
relative measures.

Discussion

In the present article, we introduced the distinction of absolute and relative
sensitivity. The distinction addresses two essentially different yet interrelated
hypotheses regarding item sensitivity. Absolute sensitivity relates to the hypoth-
esis of whether or not a single item is sensitive. Accordingly, absolute measures
summarize the overall sensitivity of a single item to instruction. In contrast,
relative sensitivity relates to the hypothesis of whether item sensitivity deviates

TABLE 4.
Comparison of Judgment Based on Absolute and Relative Measures

Relative Measures

Absolute Measures

Insensitive Sensitive

Global sensitivity
Insensitive 1 14
Sensitive 6 14
Differential sensitivity
Insensitive 1 3
Sensitive 7 24

Note. Judgment of global sensitivity is based on 95%Bayesian credible intervals. Judgment of
differential sensitivity is based on Bayes’s factors.
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from test sensitivity. Hence, relative measures summarize a single item’s degree
of deviation from test sensitivity.
Technically, the distinction is based on whether or not item sensitivity mea-

sures are estimated conditional on test sensitivity. Within an IRT framework, test
sensitivity refers to the (latent) classroom-level ability and variance components.
The classroom-level ability and variance components capture what is common to
all of the test items, so that mean and variance of classroom- specific and time
point–specific item parameters are relative measures of instructional sensitivity,
or DIF, if classroom ability is included in the estimation process. If classroom
ability is not included in the estimation, the mean and variance of classroom-
specific and time point–specific item parameters become absolute measures of
instructional sensitivity.
Absolute and relative sensitivity add to the measurement framework of

instructional sensitivity in several ways. First, distinguishing absolute and rela-
tive measures allows for a better understanding of common characteristics and
differences of item sensitivity measures. Existing item sensitivity measures like
the PPDI, DIF approaches or the LMLDIF approach directly relate to one of these
two categories, which are complementary to the three perspectives on instruc-
tional sensitivity defined by Naumann et al. (2016). That is, instructional sensi-
tivity measures are either absolute or relativeandtake on a specific perspective
on instructional sensitivity, related to sensitivity (a) between groups, (b) between
time points, or (c) both.
Second, distinguishing absolute and relative sensitivity has implications for

the ways we conceive instructional sensitivity. Following Polikoff’s (2010) def-
inition, instructional sensitivity is the capacity of a test or a single item to capture
effects of instruction. Absolute measures obviously comply with this definition.
They provide information on whether or not a specific item is capable of captur-
ing effects of instruction at all. If there is no change in or variation of item
parameters across time or groups, the very item does not contribute to the mea-
surement of different learning stages or classroom-level ability. In contrast,
relative measures do not obviously comply with Polikoff’s definition, at least
at the first glance. As our results from simulated data demonstrate, relative
measures are not necessarily high when item parameters vary across time or
groups. In fact, relative measures may be high even if item parameters do not
vary at all. That is, relative measures basically identify items functioning differ-
ently from the tests as a whole, either across time (relative global sensitivity) and/
or groups within the sample (relative differential sensitivity). Hence, a high
degree of relative sensitivity is a violation of measurement invariance assump-
tions in the first place. While some researchers have argued that such violations
of measurement invariance assumptions are a necessary prerequisite for instruc-
tional sensitivity and therefore might be beneficial in testing of classroom-level
characteristics (Linn & Harnisch, 1981; Naumann et al., 2014), we cannot com-
ply with this argument. Given that items may be sensitive in an absolute way
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without being sensitive in a differential way, relative sensitivity (i.e., DIF) is not
a necessary requirement for instructional sensitivity and accordingly, a high
degree of instructional sensitivity does not necessarily impact test fairness nega-
tively (Geisinger & McCormick, 2010).
At the second glance, relative measures in fact do contribute to the concept of

instructional sensitivity. While absolute measures target the item level, relative
measures relate to the intersection of the item level and the test level. As simula-
tion results (Set B) suggest, having items sensitive in an absolute way does not
necessarily result in a sensitive test. In fact, the group-level variance component
of a test built from these items is almost 0. That is, information on absolute
sensitivity alone is insufficient for building instructionally sensitive assessments.
In practice, test items oftentimes are not equally sensitive for several reasons.

For example, measures indicate more or less relative differential sensitivity for
almost all DESI items. As previous studies have revealed (e.g., Muthén, Kao, &
Burstein, 1991), relative item sensitivity may actually relate to teaching charac-
teristics. That is, finding absolute item sensitivity related to teaching tells us
whether a single item alone is instructionally sensitive, while finding relative
sensitive related to teaching tells us that the very item captures effects of teaching
differently than the test. In the latter case, the test might be either (a) insensitive
to one or more facets of instruction the item is sensitive to or (b) sensitive, yet
more or less than the specific item under investigation. As both absolute and
relative sensitivity may originate in the teaching students have received, we
consider both aspects important for the evaluation of instructional sensitivity.
The previous considerations notwithstanding, both absolute and relative mea-

sures may carry important information on item sensitivity to instruction. With
respect to test construction, absolute measures provide information on overall
sensitivity to instruction separately for each item. Relative measures then may be
beneficial in examining the consequences of test assembly by highlighting which
items deviate from the sensitivity of the assembled test. That is, relative measures
allow investigating the extent to which absolute sensitivity is in accordance
across multiple items. Ideally, a test serving as a foundation for drawing infer-
ences on schools or teaching should comprise items with high absolute sensitivity
in combination with low relative sensitivity. Then, items would be capable of
capturing effects of instruction concordantly and were less prone to violations of
measurement invariance assumptions, possibly resulting in test unfairness (e.g.,
Geisinger & McCormick, 2010).
Building on the distinction of absolute and relative item sensitivity, we pro-

vided a coherent and straightforward IRT model in consistence with the frame-
work presented in Figure 1, the LMLIRT model. When both longitudinal and
clustered data are available, the LMLIRT model allows quantifying item sensi-
tivity in terms of sensitivity between time points, that is, global sensitivity, as
well as groups within the sample, that is, differential sensitivity. The model is a
generalization of the LMLDIF approach (Naumann et al., 2014) fit to provide
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both absolute and relative measures in a convenient way, that is, conditional on
the identification constraint chosen (see Table 1). When only one group of
students or one time point of measurement is observed, the model reduces either
to a longitudinal PPDI-like (i.e., time points perspective) or to cross-sectional
multilevel DIF-like (i.e., groups perspective) approach that still allows deriving
absolute and relative measures. Given the model’s flexibility, we are confident
that the LMLIRT model allows for amore complete evaluation of item
sensitivity.
TheLMLIRTmodelworkedwellinanexemplaryapplicationtoempirical

data from the DESI study. All parameters of interest were estimated with
reasonable (un-)certainty. Absolute andrelative measures were distinguishable
empirically. As may be inferred from the empirical data example, item sensi-
tivity measures provide inconsistent results not only due to their perspective on
instructional sensitivity (see Naumann et al., 2014, 2016) but also due to their
absolute or relative nature. That is, judgment based on absolute and relative
sensitivity measures may differ not onlybetween but also within the perspec-
tives on instructional sensitivity. Interestingly, the DESI-Konsortium (2008)
has already provided empirical support for the DESI test’s instructional sensi-
tivity. Yet the latent intraclass correlations for DESI test scores are comparably
low despite many absolutely sensitiveitems. Thus, we suspect one reason for
the high number of relatively differentially sensitive items in a rather low
correlation of absolute sensitivity across items. Accordingly, further analyses
on the extent to which relative sensitivityfound in DESI data relates to teaching
characteristics might allow for a deeper understanding of what aspects of
teaching do contribute to students’ DESI test scores—and what aspects affect
certain items only.
Nevertheless, there are two issues that need to be addressed regarding our

work and measuring instructional sensitivity in general. First, although we
checked whether item sensitivity was statistically meaningful, we did not engage
its practical relevance. To date, there are no criteria for judging the practical
impact for a given degree of item sensitivity. Yet such criteria might allow for
judging item sensitivity beyond simply labeling items as either (absolutely and/or
relatively) sensitive or insensitive and ideally refer to the consequences for test
construction and test score interpretation associated when using items with a
given degree of sensitivity. Second, statistical indicators of item sensitivity need
validation. As criticized by van der Linden (1981) before, statistical indicators
are not per se valid to instruction. Even today, empirical evidence on valid
interpretations of item sensitivity indices is rather scarce (Polikoff, 2010), as
only very few studies included actual measures of teaching and classroom char-
acteristics in their analyses of items’ (instructional) sensitivity (e.g., Muthén
et al., 1991). The last issue is at least partly addressed by the LMLIRT model
by using classroom membership as a proxy for the diverse educational settings
students experience in school.
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Yet, using such proxy variables like classroom, course, or school mem-
bership does not ensure that item sensitivity may be solely attributed to
learning in class. On the one hand, item sensitivity may be driven by class-
room characteristics rather unrelated to teaching, for example, students’ indi-
vidual background or classroom composition. On the other hand, even when
item sensitivity is related to effectsof teaching, these effects may still to
some extent originate in various sources, for example, when some content is
taught in different (yet related) school subjects or students have more than
one teacher. In practice, the origin of effects is only traceable when sufficient
information on such cross-classified structures (e.g., van den Noortgate et al.,
2003) is present in the data to appropriately deal with confounders of
opportunities-to-learn and students’ group membership. In a like manner,
researches may want to consider dependencies among items, for example,
testlet structures (e.g., Lee, Brennan, & Frisbie, 2000). The LMLIRT model
may account for such complexities by choosing appropriate cluster variables
on the person- and/or the item-side of the model, for example, by considering
(cross-classified) nesting of students within (multiple) teachers or items nest-
ing within testlets.
Nevertheless, the (statistical) variation of item parameters is a necessary pre-

requisite for instructional sensitivity (Naumann et al., 2016). Researchers may
foster valid interpretation of sensitivity measures in three ways: (a) implementing
strong experimental designs or (b) making sure capturing the construct-relevant
variation within a domain when implementing less standardized experimental
designs, for example, by random sampling and using sufficiently large samples
sizes, and ideally in either case by (c) incorporating direct measures of instruc-
tion that are deeply rooted in learning and instructional theories. Then, guided by
strong hypotheses, researchers may be able to validly draw inferences on items’
instructional sensitivity in terms of item sensitivity explained by or attributable to
teaching characteristics.
With respect to our work, although the LMLIRT model is descriptive in

nature, advancing the model to an explanatory IRT model (see, e.g., De Boeck
& Wilson, 2004; van den Noortgate & De Boeck, 2005) should, in principle, be
straightforward and provide empirical evidence for items’ instructional sensitiv-
ity (in contrast to statistical item sensitivity). Overall, we emphasize the need for
a deeper discussion on to what aspects of instruction items should or should not
be sensitive to, and we are confident that the LMLIRT model may serve as one
foundation for further analyses on the link between teaching and item sensitivity,
fostering valid use and interpretation when inferences on instruction are to be
drawn based on test scores.
Nonetheless, researchers as well as policymakers need to be aware that stu-

dents’ achievement only is one of many outcomes of schools and teaching. While
tests serving as criteria for judging the effectiveness of teaching need to be
instructionally sensitive (cf. Popham, 2007), test scores alone do not tell us much
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about the factors and processes that contribute to the success of teaching. Con-
sequently, even highly instructionally sensitive tests and items cannot replace the
direct observation of classroom processes.
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