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Abstract 
Computer-based assessment can provide new insights into behavioral processes of task completion 

that cannot be uncovered by paper-based instruments. Time presents a major characteristic of the 

task completion process. Psychologically, time on task has 2 different interpretations, suggesting 

opposing associations with task outcome: Spending more time may be positively related to the 

outcome as the task is completed more carefully. However, the relation may be negative if working 

more fluently, and thus faster, reflects higher skill level. Using a dual processing theory framework, 

the present study argues that the validity of each assumption is dependent on the relative degree of 

controlled versus routine cognitive processing required by a task, as well as a person’s acquired skill. 

A total of 1,020 persons ages 16 to 65 years participated in the German field test of the Programme 

for the International Assessment of Adult Competencies. Test takers completed computer-based 

reading and problem solving tasks. As revealed by linear mixed models, in problem solving, which 

required controlled processing, the time on task effect was positive and increased with task difficulty. 

In reading tasks, which required more routine processing, the time on task effect was negative and 

the more negative, the easier a task was. In problem solving, the positive time on task effect 

decreased with increasing skill level. In reading, the negative time on task effect increased with 

increasing skill level. These heterogeneous effects suggest that time on task has no uniform 

interpretation but is a function of task difficulty and individual skill. 

Keywords: computer-based assessment, time on task, automatic and controlled processing, reading 

literacy, problem solving 
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There are two fundamental observations on human performance: the result obtained on a task and 

the time taken (e.g., Ebel, 1953). In educational assessment, the focus is mainly on the task outcome; 

behavioral processes that led to the result are usually not considered. One reason may be that 

traditional assessments are paper-based and, hence, are not suitable for collecting behavioral 

process data at the task level (cf. Scheuermann & Björnsson, 2009). However, computer-based 

assessment— besides other advantages, such as increased construct validity (e.g., Sireci & Zenisky, 

2006) or improved test design (e.g., van der Linden, 2005) - can provide further insights into the task 

completion process. This is because in computer-based assessment, log file data can be recorded by 

the assessment system that allows the researcher to derive theoretically meaningful descriptors of 

the task completion process. The present study draws on log file data from an international 

computer-based large-scale assessment to address the question of how time on task is related to the 

task outcome. As shown in the following, by analyzing the relation of task performance to the time 

test takers spent on task, we were able to obtain new insights into how the interaction of task and 

person characteristics determines the way of cognitive processing. For instance, this can contribute 

to the validation of the assessment, if time on task can be related to the task response in a 

theoretically sound way. 

Time on task is an important characteristic of the solution process indicating the duration of 

perceptual, cognitive, and psychomotorical activities. From a measurement point of view, the 

usefulness of time on task and the task outcome, respectively, depend on the tasks’ difficulty. In easy 

tasks assessing basic skills, individual differences will mainly occur in response latencies, whereas 

accuracy will be consistently high. Following this logic, a number of assessment tools that address 

constructs like naming speed (e.g., Nicolson & Fawcett, 1994), visual word recognition (e.g., Balota, 

Cortese, Sergent-Marshall, Spieler, & Yap, 2004), or number naming speed (e.g., Krajewski & 

Schneider, 2009) make use of time on task. In contrast, in more difficult tasks the accuracy of a result 

is of interest, for example, in assessments of reading comprehension (e.g., van den Broek, & Espin, 

2012) or problem solving (e.g., Greiff, Wüstenberg, et al., 2013; Klieme, 2004; Mayer, 1994; Wirth & 

Klieme, 2003). In these skill assessments, time on task usually is not taken into account. 

Nevertheless, both the task result and time on task constitute task performance regardless of the 

task’s difficulty. 

In skill assessments, the relation between time on task and task result (accuracy) can be conceived of 

in two ways. On the one hand, taking more time to work on a task may be positively related to the 

result as the task is completed more thoroughly. On the other hand, the relation may be negative if 

working faster and more fluently reflects a higher skill level. The present study addresses these 

contradictory predictions and aims at clarifying the conditions of their validity by jointly analyzing 

task success and time on task data from the computer-based Programme for the International 

Assessment of Adult Competencies (PIAAC; cf. OECD, 2013; Schleicher, 2008). Thus, we take 

advantage of the fact that computer-based assessment renders data available on a large scale that 

was previously available only through small-scale experimenting (i.e., time on task). Data such as 

time spent on individual tasks can serve to answer basic research questions (such as clarifying the 
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relation of time on task and task result in different domains). Furthermore, the data can enhance 

educational assessment. For instance, construct validation can be supported by testing whether 

behavioral process indicators are related to task outcomes as expected from theory. 

Time on Task 
Time on task is understood as the time from task onset to task completion. Thus, if the task was 

completed in order, it reflects the time taken to become familiar with the task, to process the 

materials provided to solve the task, to think about the solution, and to give a response.1 In tasks 

requiring the participant to interact with the stimulus through multiple steps, time on task can be 

further split into components, for instance, reflecting the time taken to process a single page from a 

multipage stimulus. To model time on task, two different approaches have been suggested (cf. van 

der Linden, 2007, 2009). First, time is considered an indicator of a (latent) construct, for example, 

reading speed (Carver, 1992) or reasoning speed (Goldhammer & Klein Entink, 2011). Here, response 

and time data are modeled using separate measurement models. Second, within an explanatory item 

response model, time is used as a predictor to explain differences in task success (cf. Roskam, 1997). 

In the present study, this second approach is used to investigate the relation between time on task 

and task success. Task success (dependent variable) can be perceived as a function of time on task 

(independent variable) because the individual is able to control time spent on completing a task to 

some extent, which in turn may affect the probability of attaining the correct result (cf. van der 

Linden, 2009). 

Relation of Time on Task to Task Success 
When investigating the relation between time on task and task success, the well-known speed–

accuracy tradeoff, which is usually investigated in experimental research (cf. Luce, 1986), has to be 

taken into account. Tradeoff means that for a given person working on a particular task, accuracy will 

decrease as the person works faster. The positive relation between time on task and task success, as 

predicted by the speed–accuracy tradeoff, is a within-person phenomenon that can be expected for 

any task (e.g., Wickelgren, 1977). However, when switching from the within-person level to a 

population, the relation between time on task and task success might be completely different, for 

instance, a negative or no relation, although within each person, the speed–accuracy compromise 

remains as the positive relation between time on task and task success (cf. van der Linden, 2007). 

Consequently, at the population level, findings on the relation of time on task with task success may 

be heterogeneous. One line of research modeling time on task as an indicator of speed provides 

speed–skill or speed–ability correlations of different directions and strengths across domains. For 

example, for reasoning, positive correlations between skill (measured through task success) and 

slowness (measured through time on task) were found (e.g., Goldhammer & Klein Entink, 2011; Klein 

                                                            
1 Depending on what is considered to be a task, there may be alternative definitions of time on task. For 
instance, in this special section, Kupiainen, Vainikainen, Marjanen, and Hautamäki (2014) use the term time on 
task to refer to the time needed to complete a test in a learning to learn assessment, whereas response time is 
considered to represent the time needed to respond to a single question or problem (which is comparable to 
our notion of time on task). 
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Entink, Fox, & van der Linden, 2009). For arithmetic zero correlations (van der Linden, Scrams, & 

Schnipke, 1999) were obtained, whereas for basic skills to operate a computer’s graphical user 

interface, a negative relation was demonstrated (Goldhammer, Naumann, & Keßel, 2013), as was for 

basic reading tasks such as phonological comparison and lexical decision (Richter, Isberner, 

Naumann, & Kutzner, 2012). 

These results suggest that the time on task effect might be moderated by domain and task difficulty. 

A comparison of tasks across studies reveals that in difficult tasks assessing for instance reasoning, 

task success is positively related to time on task, whereas in easy tasks, such as basic interactions 

with a computer interface, the relation is negative. Independent evidence for this line of reasoning 

comes from research suggesting that task difficulty within a given domain affects the association 

between time on task and task success. Neubauer (1990) investigated the correlation between the 

average time on task and the test score for figural reasoning tasks and found a zero correlation. 

However, for task clusters of low, medium, and high difficulty, he found negative, zero, and positive 

correlations, respectively. Similarly, in a recent study by Dodonova and Dodonov (2013), the strength 

of the negative correlation between time on task and accuracy in a letter sequence task tended to 

decrease with increasing task difficulty. 

Time on Task Effects and Dual Processing Theory 
An explanation for the heterogeneity of associations between time on task and task success may be 

provided by dual processing theory, which distinguishes between automatic and controlled mental 

processes (cf. Fitts & Posner, 1967; Schneider & Chein, 2003; Schneider & Shiffrin, 1977). Automatic 

processes are fast, proceduralized, and parallel; they require little effort and operate without active 

control or attention, whereas controlled processes are slow, are serial, require attentional control, 

and can be alternated quickly. Tasks are amenable to automatic processing due to learning only 

under consistent conditions, that is, rules for information processing including related information-

processing components and their sequence are invariant (Ackerman, 1987). Learning under 

consistent conditions can be divided into three stages (cf. Ackerman & Cianciolo, 2000; Fitts & 

Posner, 1967). The first stage, when the individual acquires task knowledge and creates a production 

system (cf. Adaptive Control of Thought [ACT] theory; Anderson & Lebiere, 1998), is characterized by 

controlled processing. Automatic processing becomes more apparent in the second stage and 

dominates in the third stage. Thus, task performance is slow and error prone at the beginning of 

learning, but speed and accuracy increase as the strength of productions is increased through 

practice (Anderson, 1992). 

Consequently, in domains and tasks that allow for automatic processing, a negative association 

between time on task and task success is expected. Well-practiced task completion is associated with 

both fast and correct responses. In contrast, a positive association is expected in domains and tasks 

that do not allow for a transition from controlled to automatic processing due to inconsistent 

processing rules and variable sequences of information processing. Taking more time to work 

carefully would positively impact task success. In line with this reasoning, Klein Entink et al. (2009) 
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showed that test effort in a reasoning test, that is, the extent to which a test taker cares about the 

result, is positively related to test-taking slowness (measured through time on task), which itself is 

positively related to skill (measured through task success). 

Notably, dual processing theory suggests a dynamic interaction of automatic and controlled 

processing in that the acquisition of higher level cognition is enabled by and builds upon automatic 

subsystems (Shiffrin & Schneider, 1977). Basically, tasks within and between domains are assumed to 

differ with respect to the composition of demands that necessarily require controlled processing and 

those that can pass into automatic processing (Schneider, & Fisk, 1983). Similarly, for a particular 

task, individuals are assumed to differ in the extent to which the task-specific information-processing 

elements that can be automatized are actually automatized (e.g., Carlson, Sullivan, & Schneider, 

1989). In the following two sections, we describe in detail how automatic and controlled processes 

may interact in the two domains considered, reading and problem solving. 

Time on Task in Reading 
Reading a text demands a number of cognitive component processes and related skills. Readers have 

to identify letters and words. Syntactic roles are then assigned to words, sentences are parsed for 

their syntax, and their meaning is extracted. Coherence must be established between sentences, and 

a representation of the propositional text base must be created, as well as a situation model of the 

text contents, integrated with prior knowledge (Kintsch, 1998). In addition, cognitive and 

metacognitive regulations might be employed. When text contents are learned, strategies of 

organization and elaboration will aid the learning process. These different cognitive component skills 

allow for a transition from controlled to automatic processing to different degrees. Processes such as 

phonological recoding, orthographic comparison, or the retrieval of word meanings from long-term 

memory are slow and error prone in younger readers but become faster and more accurate as 

reading skill acquisition progresses (Richter, Isberner, Naumann, & Neeb, 2013). Indeed, theories of 

reading such as the lexical quality hypothesis (Perfetti, 2007) claim that reading skill rests on reliable 

as well as quickly retrievable lexical representations. In line with this, text comprehension is 

predicted by the speed of access to phonological, orthographic, and meaning representations (e.g., 

Richter et al., 2012, 2013). Beyond the word level, the speed of semantic integration and local 

coherence processes are equally positively related to comprehension (e.g., Naumann, Richter, 

Christmann, & Groeben, 2008; Naumann, Richter, Flender, Christmann, & Groeben, 2007; Richter et 

al., 2012). As shown by longitudinal studies, accuracy in reading assessments during primary school 

approaches perfection, whereas reading fluency reflecting reading performance per time unit 

continues to increase across years of schooling (cf. Landerl & Wimmer, 2008). The high accuracy 

rates suggest that reading is already well automatized during primary school. 

Following this line of reasoning, in reading tasks, a negative time on task effect might be expected. A 

number of reading tasks, however, require attentional cognitive processing to a substantial degree as 

well. For instance, readers might need to actively choose which parts of a text to attend to when 

pursuing a given reading goal (e.g., Gräsel, Fischer, & Mandl, 2000; Naumann et al., 2007, 2008; 
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Organisation for Economic Co-Operation and Development [OECD], 2011, chap. 3; Puntambekar & 

Stylianou, 2005). In the case of a difficult text, strategies such as rereading or engaging in self-

explanations (e.g., Best, Rowe, Ozuru, & McNamara, 2005; McKeown, Beck, & Blake, 2009) are 

needed for comprehension. Also, in skilled readers, such processes require cognitive effort (Walczyk, 

2000), and effort invested in strategic reading positively predicts comprehension (e.g., Richter, 

Naumann, Brunner, & Christmann, 2005; Sullivan, Gnedsdilow, & Puntambekar, 2011). This, 

however, will involve longer time spent on task. 

Taken together, this means that in easy reading tasks, the potentially automatic nature of reading 

processes at the word, sentence, and local coherence level leads to a negative time on task effect 

(e.g., when reading a short and highly coherent linear text). As reading tasks become more difficult 

and readers need to engage in strategic and thus controlled cognitive processing, the negative time 

on task effect will be diminished or reversed. 

Time on Task in Problem Solving 
Problem solving is required in situations where a person cannot attain a goal by using routine actions 

or thinking due to barriers or novelty (e.g., Funke & Frensch, 2007; Mayer, 1992; Wirth & Klieme, 

2003). Problem solving requires higher order thinking, the finding of new solutions, and sometimes 

interaction with a dynamic environment (Klieme, 2004; Mayer, 1994). In the present study, a specific 

concept of problem solving as defined for the PIAAC study is taken into account; it refers to solving 

information problems in technology-rich environments. That is, technology-based tools and 

information sources (e.g., search engines, Web pages) are used to solve a given problem by “storing, 

processing, representing, and communicating symbolic information” (OECD, 2009b, p. 8). 

Information problems in this sense (e.g., finding information on the Web fulfilling multiple criteria to 

take a decision) cannot be solved immediately and routinely. They require developing a plan 

consisting of a set of properly arranged subgoals and performing corresponding actions through 

which the goal state can be reached (e.g., identifying the need for information to be obtained from 

the Web, defining an appropriate Web search query, scanning the search engine results page, 

checking linked Web pages for multiple criteria, collecting and comparing information from selected 

Web pages, and making use of it in the decision to be taken). This differs, for instance, from solving 

logical or mathematical problems where complexity is determined by reasoning requirements but 

not primarily by the information that needs to be accessed and used (OECD, 2009b). Cognitive and 

metacognitive aspects of problem solving as assessed in PIAAC include setting up appropriate goals 

and plans to achieve the goal state. This includes monitoring the progress of goal attainment, 

accessing and evaluating multiple sources of information, and making use of this information (OECD, 

2009b, p. 11). 

Problem solving is a prototype of an activity that relies on controlled processing. Controlled 

processing enables an individual to deal with novel situations for which automatic procedures and 

productions have not yet been learned. Otherwise, the situation would not constitute a problem. 

Accordingly, Schneider and Fisk (1983) described skilled behavior in problem solving and strategy 
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planning as a function of controlled processing. Notably, problem solving skill may also benefit from 

practice. The development of fluent component skills at the level of subgoals enables problem 

solvers to improve their strategies optimizing the problem solving process (see, e.g., Carlson, Khoo, 

Yaure, & Schneider, 1990). 

General conceptualizations of (complex) problem solving conceive problem solving performance as 

consisting of knowledge acquisition including problem representation and the application of this 

knowledge to generate solutions (cf. Funke, 2001; Greiff, Wüstenberg, et al., 2013). Wirth and 

Leutner (2008) identified two simultaneous goals in the knowledge acquisition phase, that is, 

generating information through inductive search and integrating this information into a coherent 

model. Successful problem solvers move more quickly from identification to integration and thus will 

be able to invest time in advanced modeling and prediction (which provide the basis for successful 

knowledge application) rather than in low-level information processing. 

Problem solving in technology-rich environments assumes two concepts, accessing information and 

making use of it, that seem similar to knowledge acquisition and application. However, there are 

differences in that, for instance, retrieving information (e.g., by means of a search engine) is not 

comparable to an inductive search for rules governing an unknown complex system. Nevertheless, 

the various notions of problem solving assume successive steps of controlled information processing 

that may benefit from fluent component skills. 

Therefore, a positive effect of time on task on task success is expected for problem solving. Taking 

sufficient time allows for all serial steps to planned subgoals to be processed, as well as more 

sophisticated operations to be used and properly monitored regarding progress. Particularly for weak 

problems solvers, spending more time on a task may be helpful to compensate for a lack of 

automaticity in required subsystems (e.g., reading or computer handling processes). 

Research Goal and Hypotheses 
Our general research goal was to assess and investigate behavioral processes and their relation to 

task performance in computer-based assessment. More specifically, we determined the effect of 

time on task on the task result and the conditions that influence the strength and direction of this 

effect. For this, we used the computer-based assessment of reading and problem solving in the 

international large-scale study PIAAC, including log file data generated by the assessment system. 

From a dual processing framework, we derived the general hypothesis that the relative degree of 

controlled versus automatic cognitive processing as required by a task, as well as the test taker’s 

acquired skill level, determines the strength and direction of the time on task effect. The following 

three hypotheses address time on task effects across domains, task properties, and person 

characteristics. The fourth hypothesis aims at validating the interpretation of the time on task effect 

in problem solving by splitting up the global time on task into components that represent different 

steps of task solution and information processing. 
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Hypothesis 1: Time on task effect across domains. We expected a positive time on task effect for 

problem solving in technology-rich environment tasks. A negative time on task effect was expected 

for reading tasks because, in reading tasks, a number of component cognitive processes are apt for 

automatization. Problem solving, in contrast, by definition must rely on controlled processing to a 

substantial degree in each task. 

Hypothesis 2: Time on task effect across tasks. Within domains, we expected the time on task effect 

to be moderated by task difficulty. Easy tasks can be assumed to be completed substantially by 

means of automatic processing, whereas difficult tasks evoking more errors require a higher level of 

controlled processing. Accordingly, we expected a positive time on task effect in problem solving to 

be accelerated with increasing task difficulty, and a negative time on task effect in reading to 

diminish with increasing task difficulty. 

As our intepretation of the time on task effect focuses the way of cognitive processing, we 

additionally explored the potentially moderating role of the cognitive operation involved in each task 

as defined a priori by the PIAAC assessment framework (e.g., access in reading). More specifically, we 

investigated whether the task characteristic “cognitive operation” explains task difficulty and if so 

whether the time on task effect would depend on the presence of specific cognitive operations. 

Hypothesis 3: Time on task effect across persons. For a given task, individuals are assumed to differ in 

the extent to which the information-processing elements that are amenable to automatic processing 

are actually automatized. Highly skilled individuals are expected to be in command of well-

automatized procedures within task solution sub-systems that are apt to automatization (such as 

decoding in reading or using shortcuts to perform basic operations in a computer environment). We 

therefore expect the time on task effect to vary across persons. On the one hand, we predict that the 

time on task effect gets more positive for less skilled problem solvers and less negative for less skilled 

readers since they are expected to accomplish tasks with higher demands of controlled and strategic 

processing than skilled persons. For example, poor readers may rely on compensatory behaviors and 

strategies, especially when completing difficult tasks (see Walczyk, 2000). On the other hand, for 

skilled persons, we expect the inverse result, that is, due to a higher degree of routinized processing, 

the time on task effect gets less positive for skilled problem solvers and more negative for skilled 

readers. 

Hypothesis 4: Decomposing time on task effect at task level. Computer-based assessment and 

especially the exploitation of log file data can help to further understand the task completion 

process. By moving from the global process measure of time on task to the underlying constituents, 

we can further validate the interpretation of the time on task effect. This is especially true for tasks 

requiring a complex sequence of stimulus interactions that can be reconstructed from a log file, 

giving insight into the accuracy and timing with which subgoals were being completed. In the present 

study, tasks assessing problem solving in technology-rich environments are highly interactive, 

requiring the operation of simulated computer and software environments or navigation in 

simulated Web environments. For a particular task, we expect that a positive time on task effect is 
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confined to the completion of steps that are crucial for a correct solution (e.g., in a Web 

environment, visiting a page that presents information needed to give a correct response), whereas 

for others the effect is assumed to be negative (e.g., in a Web environment, visiting an irrelevant 

page). If this were the case, it would corroborate our assumption that it is the need for strategic and 

controlled allocation of cognitive resources that produces a positive time on task effect in problem 

solving or very difficult reading tasks. 

Method 

Sample 

The PIAAC study initiated internationally by the OECD (cf. OECD, 2013; Schleicher, 2008) is a fully 

computer-based international comparative study assessing the competence levels of adults in 2011–

2012. For the present study, data provided by GESIS–Leibniz Institute for the Social Sciences from the 

German PIAAC field test in 2010 were used. The target population consisted of all 

noninstitutionalized adults between the ages of 16 and 65 years (inclusive) who resided in Germany 

at the time of sample selection and were enrolled in the population register. For the field test in 

Germany, a three-stage sampling was used with probability sample of communities and individuals in 

five selected federal states. The within-household sample included in the present study comprised 

1,020 individuals completing the computer-based PI-AAC assessment. Of these, 520 were male 

(50.98%) and 458 female (44.90%). For 42 participants, no gender information was available (4.12%). 

The average age was 39.40 years (SD = 13.30). 

Instrumentation 

Reading literacy. The PIAAC conceptual framework for reading literacy is based on conceptions of 

literacy from the International Adult Literacy Survey (IALS) conducted in the 1990s and the Adult 

Literacy and Life Skills Survey (ALL) conducted in 2003 and 2006 (see OECD, 2009a). It was extended 

for PIAAC to cover reading skill in the information age by including skills of reading in digital 

environments. More than half of the reading tasks were taken from the former paper-based adult 

literacy assessments IALS and ALL to link PIAAC results back to these studies. New tasks simulating 

digital (hypertext) environments were developed to cover the broadened construct including skills of 

reading digital texts. The tasks covered the cognitive operations “access and identify information,” 

“integrate and interpret information,” and “evaluate and reflect information” (see OECD, 2009a). The 

majority of tasks included print-based texts as used in previous studies (e.g., newspapers, magazines, 

books). Tasks representing the digital medium included, for instance, hypertext and environments 

such as message boards and chat rooms. Tasks are also varied with respect to the context (e.g., 

work/occupation, education and training) and whether they included continuous texts (e.g., 

magazine articles), noncontinuous texts (e.g., tables, graphs), or both. 

In the PIAAC field test, 72 reading tasks were administered. For the present study, only those 49 

tasks were used that entered the main study. To respond, participants were required to highlight 

text, to click a (graphical) element of the stimulus, to click a link, or to select a check box. As a 

sample, Figure 1 (upper panel) presents a screenshot from the first “Preschool Rules” task. 
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Respondents were asked to answer the question shown on the left side of the screen by highlighting 

text in the list of preschool rules on the right side. The question was to figure out the latest time that 

children should arrive at preschool. Thus, readers were required to access and identify information, 

the context was personal, and print text was presented. 

Problem solving in technology-rich environments. This construct refers to using information and 

communication technology (ICT) to collect and evaluate information so as to communicate and 

perform practical tasks such as organizing a social activity, deciding between alternative offers, or 

judging the risks of medical treatments (OECD, 2009b). The framework (OECD, 2009b) defined 

multiple task characteristics that formed the basis for instrument development. The cognitive 

operations to be covered by the tasks were goal setting and progress monitoring, planning and self-

organizing, acquiring and evaluating information, and making use of information. The technology 

dimensions included hardware devices (e.g., desktop or laptop computers), software applications 

(e.g., file management, Web browser, e-mail, spreadsheet), various commands and functions 

(e.g., buttons, links, sort, find), and multiple representations (e.g., text, numbers, graphics). 

Moreover, task development aimed at the variation of the task’s purpose (e.g., personal, 

work/occupation), intrinsic complexity (e.g., the minimal number of actions required to solve the 

problem, the number of constraints to be satisfied), and the explicitness of the problem (implicit, 

explicit). 

As defined by the framework (OECD, 2009b), tasks were developed in such a way that they varied in 

the number of required cognitive operations (e.g., acquiring and evaluating information), the number 

and kind of actions that have to be taken to solve the task in a computer environment, the inclusion 

of unexpected outcomes or impasses, and the extent to which the tasks were open-ended. A more 

difficult task simulating real-life problem solving would require several cognitive operations, multiple 

actions in different environments, unexpected outcomes, and the planning of multiple subgoals that 

may depend on each other. A corresponding sample task would be one in which the problem solver 

has to do a Web search on the Internet to access information, integrate and evaluate information 

from multiple online sources by using a spreadsheet, and then create a summary of the information 

to be presented at school by using a presentation software. 

In the PIAAC field test, 24 problem solving tasks were administered. Of these tasks, only 13 were 

selected for the main study. For the present study, all available tasks were considered to obtain more 

reliable results on the correlation of effects varying across tasks. After excluding tasks with poor 

discrimination and tasks for which no score could be derived, 18 tasks were left. In the context of 

international large-scale assessments, further tasks may be dropped, especially if they show 

differential item functioning across participating countries. However, as we only used national data 

and did not aim at comparing countries, there was no need to consider task-by-country interactions. 

To give a response in the simulated computer environments, participants were required to click 

buttons, menu items, or links, to select from drop-down menus, to drag and drop, and so on. 
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As a sample, Figure 1 (lower panel) presents a screenshot from the task “Job Search.” Regarding 

cognitive operations, participants had to access and evaluate information and monitor criteria for  

 

Figure 1. Sample tasks: reading literacy task “Preschool Rules” (upper panel); problem solving in technology-rich 

environments task “Job Search” with only the start page showing the search engine results depicted, not the linked pages 

(lower panel). OECD = Organisation for Economic Co-Operation and Development; PIAAC = Programme for the International 

Assessment of Adult Competencies. 
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constraint satisfaction within a simulated job search. Thus, the task’s purpose was occupational. 

Starting from a search engine results page, the task was to find all the sites that do not require users 

to register or pay a fee and to bookmark these sites. Regarding the explicitness of the problem, 

instructions did not directly tell participants the number of sites they must locate, but evaluation 

criteria were clearly stated. To solve the task, single actions of evaluation had to be repeated for 

each website; for a target page, multiple constraints needed to be satisfied. Both characteristics 

determined intrinsic complexity. As regards software applications and related commands, the task 

was situated in a simulated Web environment that included tools and functionality similar to those 

found in real-life browser applications, that is, clickable links, back and forward buttons of the 

browser, and a bookmark manager that allowed one to create, view, and change bookmarks. The 

opening page presented the task description on the left side and the results of the Web search 

engine, that is, clickable links and brief information about the linked page, on the right side of the 

screen. From this search engine results page, participants had to access the hypertext documents 

connected via hyperlinks to locate and bookmark those websites that meet the search criteria. 

Design and Procedure 

A rotation design was used to form 21 booklets resulting in an effective sample size for reading 

literacy of 113 to 146 responses per task and for problem solving in technology-rich environments of 

140 to 191 responses per task. 

Data were collected in computer-assisted personal interviews. Interviewers went to the participants’ 

households to conduct the interview in person. First, participants completed a background 

questionnaire, and then the interviewer handed the notebook to the participant for completion of 

the cognitive tasks. There was no global time limit, that is, participants could take as long as they 

needed. Participants only completed the computer-based tasks if they were sufficiently ICT literate, 

which was tested by ICT tasks requiring basic operations such as highlighting text by clicking and 

dragging. In case of nonsufficient ICT literacy, a paper-based assessment was administered. In the 

computer-based part, participants were randomly assigned to booklets including reading literacy, 

numeracy, and problem solving tasks. For the present study, only data from the computer-based 

assessment of reading literacy and problem solving were included. 

Statistical Analyses 

Modeling approach. The generalized linear mixed model (GLMM) framework (e.g., Baayen, 

Davidson, & Bates, 2008; De Boeck et al., 2011; Doran, Bates, Bliese, & Dowling, 2007) was used to 

investigate the role of time on task in reading and problem solving (Hypotheses 1–3). A linear model 

consists of a component ηpi, representing a linear combination of predictors determining the 

probability of person p for solving task i correctly. The predictors’ weights are called effects. 

Modeling mixed effects means to include both random effects and fixed effects. Fixed effects are 

constants across units or groups of a population (e.g., tasks, persons, classrooms), whereas random 

effects may vary across units or groups of a population (cf. Gelman, 2005). The generalized version of 

the linear mixed model accommodates also categorical response variables. In measurement models 
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of item response theory, for instance, the effect of each item or task i on the probability of obtaining 

a correct response is typically estimated as a fixed effect representing the task’s difficulty or easiness. 

The effect of person p is usually modeled as random, that is, as an effect which may vary across 

persons and for which the variance is estimated. The variance of this random effect represents the 

variability of skill across persons. 

The GLMM incorporating both random effects, b, and fixed effects, β, can be formulated as follows:  

η = Xβ + Zb (e.g., Doran et al., 2007). In this model, X is a model matrix for predictors with fixed 

weights included in vector β, and Z is a model matrix for predictors with random weights included in 

vector b. The distribution of the random effects is modeled as a multivariate normal distribution, 

b~N(0, Ʃ), with Ʃ as the covariance matrix of the random effects. The continuous linear component 

ηpi is linked to the observed ordered categorical response Ypi (correct vs. incorrect) by transforming 

the expected value of the observed response, that is, the probability to obtain a correct response πpi . 

When using the log-transformed odds ratio (log-odds), the logit link function follows: 

 ηpi = ln(πpi/(1- πpi)) (cf. De Boeck et al., 2011). 

In the present study, to address the research question of whether the strength of the time on task 

effect is correlated with the easiness of tasks, the effects of both persons and tasks were defined as 

random intercepts (cf. random person random item model; De Boeck, 2008). A fixed intercept, β0, is 

estimated additionally, which is the same for all participants and tasks. 

A baseline Model M0 was obtained by specifying an item response model (1PL or Rasch model) with 

task and person as random intercepts and by adding the time on task as person-by-item predictor 

with a fixed effect β1. Model M0 serves as parsimonious reference model that is compared with 

more complex models including further fixed and/or random effects: ηpi = (intercept β0) + (individual 

skill b0p) + (relative easiness b0i) + β1 (time on task tpi). 

In the following analyses, this model is systematically extended by adding further predictors. For 

example, the predictor (time on task tpi) with the random weight b1i is added, providing the variance 

of the by-task adjustment b1i to the fixed time on task effect β1. As the by-task adjustment, b1i, and 

task easiness, b0i, are tied to the same observational unit, that is, task i, their association is also 

estimated. This correlation can be used to test whether the strength of the time on task effect 

linearly depends on task difficulty (as claimed by Hypothesis 2). Figure 2 shows the path diagram of 

Model M1, which is Model M0 extended by the predictor (time on task tpi) with a random weight 

across tasks, b1i (cf. the graphical representations of GLMMs by De Boeck & Wilson, 2004). In Model 

M1, there is a fixed time on task effect, β1, representing the average time on task effect. However, it 

is adjusted by task by adding the weight b1i, which allows the time on task effect to vary across tasks 

as indicated by subscript i. The other models under consideration can be derived in a similar fashion 

by adding random effects adjusting the time on task effect by cognitive operation (Model M2, cf. 

Hypothesis 2), by person (Model M3, cf. Hypothesis 3), or by task and person (Model M4, integrating 

Hypothesis 2 and Hypothesis 3). 

To clarify whether the introduction of further random components into the model significantly 

improves model fit, model comparison tests were conducted. For comparing nested models, the 

likelihood ratio (LR) test was used, which is appropriate for inference on random effects (Bolker et 
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al., 2009). The test statistic, that is, twice the difference in the log-likelihoods, is approximately χ2 

distributed with degrees of freedom equal to the number of extra parameters in the more complex 
model. The LR test is problematic when the null hypothesis implies the variance of a random effect to 
be zero; this means that the parameter value is on the boundary of the parameter space (boundary 
effect; cf. Baayen et al., 2008; Bolker et al., 2009; De Boeck et al., 2011). Using the chi-square 
reference distribution increases the risk of Type II errors; therefore, the LR test has to be considered 
as a conservative test for variance parameters. 
For the analysis at the task level (Hypothesis 4), logistic regression was used to predict task success 
by the time taken on individual steps of the task completion sequence. 

 

 Figure 2. Graphical representation of model M1 showing how the probability to obtain a correct response, ηpi, is affected 
by a general intercept, β0, the relative task easiness, b0i, and individual skill, b0p. Moreover, there is a time on task effect 
consisting of a fixed part, β1, as well as random part, b1i, which means that the time on task effect may vary across tasks i. 

Interpreting the effect of time on task in the GLMM. The “fundamental equation of RT modeling” 
(van der Linden, 2009, p. 259) assumes that the response time (RT; time on task) of person p when 
completing task i depends both on the person’s speed τp and the task’s time intensity λ . Accordingly, 
the expected value of the (log-transformed) response time can be defined as follows: E(ln(tpi)) = λ  - τp 
(cf. van der Linden, 2009). This implies that the effect of time on task reflects both the effect of the 
person and the task component. 
When the effect of time on task is introduced as an overall fixed effect β1, as in Model M0, this effect 
would reflect the association between time on task and the log-odds ratio of the expected response. 
This association could not be interpreted in a straight-forward way, as it depends not only on the 
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correlation between underlying person-level parameters, that is, skill and speed, but also on the 

correlation of corresponding item parameters, that is, difficulty and time intensity (see van der 

Linden, 2009).2 However, when modeling the effect of time on task as an effect random across tasks 

(Hypothesis 1), groups of tasks supposed to be homogeneous (Hypothesis 2), or individuals 

(Hypothesis 3), the influences from the task and person levels can be disentangled. 

A time on task effect random across tasks is obtained by introducing the by-task adjustment b1i to 

the fixed time on task effect β1. The time on task effect by task results as β1 + b1i. Thereby, time on 

task is turned into a person-level covariate varying between tasks. That is, given a particular task with 

certain time intensity, variation in time on task is only due to differences in persons’ speed (plus 

residual). This allows us to interpret time on task as an task-specific speed parameter predicting task 

success above and beyond individual skill. 

A by-person random time on task effect means to adjust the fixed time on task effect β1 by the 

person-specific parameter b1p, resulting in the time on task effect β1 + b1p. The fixed effect shows a 

constant as subscript, whereas the random effect is provided additionally with p as subscript 

indicating that the effect may vary across persons p. Given a particular person working at a certain 

speed level, variation in time on task is only due to differences in the tasks’ time intensity (plus 

residual). This means that time on task can be conceived of as a task-level covariate that is specific to 

persons and predicts task success above and beyond task easiness. 

Trimming of time data. As a preparatory step for data analysis, the (between-person) time on task 

distribution of each task was inspected for outliers. The middle part of a time on task distribution 

was assumed to include the observations that are most likely to come from the cognitive processes 

of interest. To exclude extreme outliers in time on task and to minimize their effect on analyses, 

observations two standard deviations above (below) the mean were replaced by the value at two 

standard deviations above (below) the mean. As even a single extreme outlier can considerably 

affect mean and standard deviation, time on task values were initially log-transformed, which means 

that extremely long time on task values were pulled to the middle of the distribution. With this 

trimming approach, 4.79% of the data points in reading literacy and 4.67% in problem solving were 

replaced. Transforming a covariate may have an impact on estimated parameters of the linear mixed 

model (for linear transformations, see, e.g., Morrell, Pearson, & Brant, 1997). Therefore, we 

conducted the analyses also without log-transforming the time on task variable. As we obtained the 

same result pattern, we report the analyses with log transformation only. Results obtained with the 

untransformed data are available from the first author upon request. 

Statistical software. For estimating the presented GLMMs, the lmer function of the R package lme4 

(Bates, Maechler, & Bolker, 2012) was applied. The R environment (R Core Team, 2012) was also 

used to conduct logistic regression analyses. 

                                                            
2 We thank an anonymous reviewer who advised us to consider this issue. 
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Results 

Difficulty of Tasks 

To compare the difficulty of problem solving tasks and reading literacy tasks, the baseline Model M0 

was tested for both domains without the time on task effect. For reading literacy, an intercept of β0 = 

0.61 (z = 3.21, p < .01) was obtained; it represents the marginal log-odds for a correct response in a 

task of average easiness completed by a person of average skill; the corresponding probability was 

64.68%. For problem solving, the result was β0 = -0.72 (z = -2.37, p < .01), indicating that the 

probability of a correct response was on average only 32.68%, that is, problem solving tasks were 

much harder than reading literacy tasks. Figure 3 shows the densities of the estimated task easiness 

parameters for reading literacy tasks (upper panel) and problem solving tasks (lower panel). Task 

easiness values were obtained by adding the intercept β0 and the random task intercept (relative 

easiness b0i). The proportion of correct responses, p, ranged for reading literacy from 12.41% to 

96.92% and for problem solving from 11.86% to 77.49%. 

Time on Task Effect by Domain (Hypothesis 1) 

For testing Hypotheses 1 and 2, Model M0 was extended to Model M1 by adding the by-task random 

time on task effect b1i: ηpi = (intercept β0) + (individual skill b0p) + (relative easiness b0i) + β1 (time on 

task tpi) + b1i (time on task tpi). 

To address Hypothesis 1 regarding the time on task effect by domain, the fixed time on task effects 

β1, as specified in Model M1 (see also Figure 2), were compared between reading literacy and 

problem solving. 

Reading literacy. Table 1 provides an overview of the results. For reading literacy, a negative and 

significant time on task effect of β1 = -0.61 (z = -4.90, p < .001) was found. Thus, for a reading literacy 

task of average difficulty, correct responses were associated with shorter times on task, whereas 

incorrect responses were associated with longer times on task. 

Problem solving. For problem solving, a positive and significant time on task effect of β1 = 0.56 (z = 

2.30, p = .02) was estimated. Thus, for a problem solving task of average difficulty, correct responses 

were associated with longer times on task and vice versa. These findings give support to Hypothesis 

1. 

 



 
 

 

17 
 
 

 

  
 

 

 -3   -2   -1   0   1   2   3   4 

Reading literacy - Task easiness β0 + b0i 

 
 

  
 

 

  -3   -2   -1   0    1   2    3   4 

Problem solving - Task easiness β0 + b0i 

Figure 3. Distribution of estimated task easiness parameters for reading literacy (upper panel) and problem solving in 

technology-rich environments (lower panel). On average, reading literacy tasks were easier than problem solving tasks. 

Time on Task Effect by Task (Hypothesis 2) 

If the assumption holds that task difficulty moderates the time on task effect, a relation between task 

easiness and the strength of the time on task effect should be observable within a domain. To test 

Hypothesis 2, the variances of the by-task adjustments to the fixed time on task effects and their 

correlations with task easiness, as estimated through Model M1, were inspected for both domains 

under consideration. 

Reading literacy. For reading literacy, the variability of the by-task adjustment was estimated to be 

Var(b1i) = 0.55. This means that for reading literacy, the time on task effect varied across tasks. Most 

importantly, the by-task time on task effect and intercept were negatively correlated,  

Cor(b0i, b1i) = -.39. That is, the overall negative time on task effect became even stronger in easy tasks 

but was attenuated in difficult tasks. The upper left panel in Figure 4 illustrates how the time on task 
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effect in reading literacy was adjusted by task. To test whether the model extension improved the 

model’s goodness of fit, we compared the nested Models M0 and M1. The difference test showed 

that Model M1 fitted the data significantly better than Model M0, χ2(2) = 77.65, p < .001. To test 

whether the correlation parameter was actually needed to improve model fit, that is, to test the 

significance of the correlation, Model M1 was compared to a restricted version (Model M1r), which 

did not assume a correlation between by-task time on task effect and by-task intercept. The model 

difference test suggested that the unrestricted version of Model M1 had a better fit to the data than 

the restricted version, χ2(1) = 5.16, p = .02. Thus, the negative correlation between the by-task 

adjustment of the time on task effect and the random task intercept (i.e., task easiness) was also 

significant. 

Problem solving. For problem solving, the variance of the by-task adjustment to the fixed effect of 

time on task was estimated as Var(b1i) = 0.89. Thus, for problem solving in technology-rich 

environments, the time on task effect varied across tasks. The correlation between the by-task 

adjustment to the time on task effect and task easiness was negative as for reading literacy, Cor(b0i, 

b1i) = -.61. That is, the overall positive time on task effect became even stronger in hard-to-solve 

tasks but was attenuated in easy-to-solve tasks. Figure 4 (upper right panel) illustrates how the time 

on task effect in problem solving was adjusted by task. The model difference test, comparing the 

nested Models M0 and M1, clearly showed that adding the random time on task effect in Model M1 

improved the model fit, χ2 (2) = 73.99, p < .001. Moreover, comparing Model M1 with a restricted 

version (Model M1r) without a correlation between the by-task time on task effect and the random 

task intercept revealed that the correlation was significant, χ2(1) = 6.50, p = .01. 

All together, these results give clear support to Hypothesis 2. In a domain where task solution cannot 

rely on automatic processes such as problem solving, the already positive time on task effect was 

substantially increased in tasks that were especially difficult. In a domain where rapid automatic 

processing can account for a substantial part of the task solution process such as reading, an already 

negative time on task effect became even stronger in easier tasks but diminished in more difficult 

tasks. 

Time on Task Effect by Cognitive Operation 

An alternative explanation for the variability of the time on task effect between tasks refers to 

differences in the required cognitive operations. That is, tasks being homogeneous with respect to 

cognitive operations would show similar time on task effects. To test whether the presence of 

different cognitive operations as detailed by the respective frameworks affects the time on task 

effect, we extended Model M0 to the following Model M2 by introducing the cognitive operation c 

required in a task as a categorical task-level predictor and as a factor moderating the time on task 

effect, which is represented by the random weight b1c: ηpi = (intercept β0) + (individual skill b0p) + 

(relative easiness b0i) + β1 (time on task tpi) + (cognitive operation b0c) + b1c (time on task tpi). 
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Table 1 

Overview of Main Model Parameters on the Time on Task Effect and Model Comparison Tests 

 
 
 
Domain 

 
 
 
Research question/hypothesis 

 
 
 
Model 

Time on 
task effect 
random 
across 

χ2
 of model 

difference 
test (df in 
parentheses) 

 
Fixed-
effect 
β1 

Variance 
of 
random 
effect 

 
Correlation 
of random 
effects 

Reading literacy Baseline model M0   -0.55*** — — 
 Testing Hypotheses 1 and 2: 

Time on task effect by domain 
and task 

M1 Tasks  -0.61*** 0.55 -.39 

 Comparison with baseline model M1 vs. M0  77.65 (2)***    
 Restricted model without 

random effect correlation 
M1r Tasks  -0.59*** 0.54 — 

 Comparison with unrestricted 
model 

M1 vs. 
M1r 

 5.16 (1)*    

 Exploring the time on task effect 
by cognitive operation 

M2 Cognitive 
operations 

 -0.51*** 0.003 -1.00 

 Restricted model without 
random time on task effect 
across cognitive operations 

M2r   -0.55*** — — 

 Comparison with unrestricted 
model 

M2 vs. 
M2r 

 0.79 (1), ns    

 Testing Hypothesis 3: Time on 
task effect by person 

M3 Persons  -0.65*** 0.14 -.65 

 Comparison with baseline model M3 vs. M0  15.09 (2)**    
 Restricted model without 

random effect correlation 
M3r Persons  -0.57*** 0.09 — 

 Comparison with unrestricted 
model 

M3 vs. 
M3r 

 12.85 (1)**    

 Integrated model: Time on task 
effect by task and person 

M4 Tasks 
Persons 

 -0.69** 0.64 
0.23 

-.52 
-.78 

 Comparison with baseline model M4 vs. M0  106.14 (4)***    
Problem solving Baseline model M0   0.49*** — — 
 Testing Hypotheses 1 and 2: 

Time on task effect by domain 
and task 

M1 Tasks  0.56* 0.89 -.61 

 Comparison with baseline model M1 vs. M0  73.99 (2)***    
 Restricted model without 

random effect correlation 
M1r Tasks  0.54* 0.87 — 

 Comparison with unrestricted 
model 

M1 vs. 
M1r 

 6.50 (1)*    

 Testing Hypothesis 3: Time on 
task effect by person 

M3 Persons  0.51*** 0.22 -.79 

 Comparison with baseline model M3 vs. M0  5.98 (2)†    
 Restricted model without 

random effect correlation 
M3r Persons  0.49*** 0.12 — 

 Comparison with unrestricted 
model 

M3 vs. 
M3r 

 5.98 (1)*    

 Integrated model: Time on task 
effect by task and person 

M4 Tasks 
Persons 

 0.56* 0.89 
0.11 

-.63 
-.76 

 Comparison with baseline model M4 vs. M0  76.77 (4)***    

Note. Dashes indicate that a parameter was not included in the model. M = Model; r = restricted. ns = not significant. 

† p < .10. * p < .05. ** p < .01. *** p < .001. 
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Reading literacy. For reading literacy, the PIAAC framework assumes three broad aspects of 

cognitive operation, access and identify information, integrate and interpret information, and 

evaluate and reflect information. In a first step, we tested an explanatory item response model with 

random person and task effects as well as the effect of cognitive operation. For the three aspects of 

cognitive operations, the intercepts of 1.07 (z = 4.72, p < .01), 0.00 (z = 0.00, p = 1.00), and 0.08 (z = 

0.19, p = .85) were estimated. The probabilities of a correct response corresponding to these 

intercepts were 74.50%, 50.01%, and 51.96%. Access tasks were thus relatively easy, whereas 

integrate and evaluate tasks show quite the same level of medium difficulty; by introducing cognitive 

operation as an explanatory variable of task easiness, the variance of task easiness, Var(b0i), 

decreased from 1.52 to 1.24, which corresponds to R2= .20. 

To investigate whether the influence of time on task on task success varies across cognitive 

operations, Model M2 was tested. The obtained variance of the by-cognitive operation adjustment 

to the time on task effect was only Var(b1c) = 0.003. Moreover, the correlation with the 

corresponding intercept was Cor(b0c, b1c) = -1.00, indicating overparameterization of the model. 

Model M2 was compared with a restricted model including no time effect varying across cognitive 

operations (Model M2r); there was no significant improvement of model fit, χ2(2) = 0.79, p = .67. 

Thus, the time on task effect did not vary across cognitive operations. 

Problem solving. The time on task effect was not further investigated with respect to cognitive 

operations for two reasons. First, there was only a small set of 18 tasks available. Second, each of the 

problem solving tasks explicitly included multiple cognitive operations from a set of four dimensions, 

that is, goal setting and progress monitoring, planning and self-organizing, acquiring and evaluating 

information, and making use of information, as defined by the PIAAC assessment framework (OECD, 

2009b, p. 10). Given the constraints of a large-scale assessment, PIAAC only aimed at an overall 

indicator of problem solving. Our analyses would require a more fine-grained measure with a 

broad set of indicators for the various underlying cognitive operations. Although, for each task, one 

operation is assumed to be dominant, other operations might also be involved. For instance, the 

PIAAC framework maps the sample task “Job Search” to the cognitive operations of access and 

evaluating information as well as monitoring criteria for constraint satisfaction. There were only 

two more tasks that showed a comparable set of assumed cognitive operations, whereas in 

other tasks the requirement of accessing information was combined with a different additional 

demand, for example, communicating information. Thus, it was not possible to form subgroups with 

a sufficient number of tasks being homogeneous in the assumed composition of required 

cognitive operations. 

Time on Task Effect by Person (Hypothesis 3) 

On the person level, we assumed that the effect of time on task varies across the individual skill level. 

To test Hypothesis 3, we extended Model M0 to Model M3 by adding a random time on task effect, 

b1p, representing the variation across individuals: ηpi = (intercept β0) + (individual skill b0p) + (relative 

easiness b0i) + β1 (time on task tpi) + b1p (time on task tpi). 
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Reading literacy. For reading literacy, the variance of the by-person adjustment was Var(b1p) = 0.14. 

Thus, for reading literacy, the time on task effect varied across persons. Most importantly, a 

correlation between the by-person time on task effect and by-person intercept of Cor(b0p, b1p) = -.65 

was estimated. That is, the overall negative time on task effect became stronger in able readers but 

was attenuated in poor readers. The bottom left panel in Figure 4 illustrates how the time on task 

effect adjusted by person linearly decreases in more able persons. To clarify whether the liberal 

Model M3 better fitted the data, we compared the nested Models M0 and M3. The model difference 

test revealed that Model M3 fitted the data significantly better than Model M0, χ2(2) = 15.09, p < .01. 

 
Figure 4. Upper row: Time on task effect by task for reading literacy (left panel) and problem solving in technology-rich 

environments (right panel). The solid line indicates the fixed time on task effect; the dots show how it is adjusted by task. 

For difficult tasks, the time on task effect gets more positive, whereas it gets more negative for easy tasks. Lower row: Time 

on task effect by person for reading literacy (left panel) and problem solving in technology-rich environments (right panel). 

The solid line indicates the fixed time on task effect; the dots show how it is adjusted by person. For less able individuals, 

the time on task effect gets more positive, whereas for able persons, it gets more negative. 
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To test whether the correlation parameter is required to improve model fit, that is, to test the 

significance of the correlation, Model M3 was compared with a restricted version (Model M3r) 

without the correlation between by-person time on task effect and intercept. The model difference 

test revealed that Model M3 without restrictions was the better fitting model, χ2(1) = 12.85, p < .01. 

Problem solving. Similar results were obtained for problem solving. The variance of the by-person 

adjustment to the fixed effect of time on task was Var(b1p) = 0.22. Thus, for problem solving in 

technology-rich environments, the time on task effect varied across persons. The correlation 

between the by-person adjustment of the time on task effect and the by-person intercept (individual 

skill) was again negative and substantial, Cor(b0p, b1p) = -.79. That is, the overall positive time on task 

effect became even stronger in poor problem solvers but was attenuated in able problem solvers 

(see the bottom right panel in Figure 4). The difference test comparing Model M3 including the 

random time on task effect with the baseline Model M0 was almost significant, χ2(2) = 5.98, p = .05. 

Finally, comparing Model M3 with a restricted version (Model M3r) without a correlation between 

by-task time on task effect and intercept revealed that the correlation was significant, χ2(1) = 5.98, 

p=.01. 

Integrated Model: Time on Task Effect by Task and Person 

As assumed in Hypotheses 2 and 3, the previous results indicate that task difficulty and individual 

skill level have an influence on the strength and direction of the time on task effect. The final Model 

M4 integrates both the by-task and the by-person adjustments to the time on task effect. The results 

found for Models M1 and M3 were perfectly reproduced in the following Model M4: ηpi = (intercept 

β0) + (individual skill b0p) + (relative easiness b0i) + β1 (time on task tpi) + b1i (time on task tpi) + b1p 

(time on task tpi). 

Reading literacy. For reading literacy, the time on task effect was estimated to be β1 = -0.69 (z =         

-5.16, p < .01). The variance of the by-task adjustment to the time on task effect was Var(b1i) = 0.64, 

and that of the by-person adjustment was Var(b1p) = 0.23, that is, the time on task effect varied 

across both reading tasks and readers. Moreover, the time on task effect varied systematically in that 

the adjustments were linearly related to task easiness and individual skill level, respectively, as 

expected. The correlation between easiness of reading tasks and by-task adjustment was Cor(b0i, b1i) 

= -.52, and the correlation between individual skill and by-person adjustment was Cor(b0p, b1p) = -.78. 

The difference test showed that model M4 fit the data significantly better than model M0, χ2(4) = 

106.14, p < .001. 

The curves in Figure 5 (upper panel) indicate how for a given reader and reading task the probability 

for a correct response depends on time on task. The range of the time on task axis represents the 

empirical range of time on task in the selected tasks. The slope of the curves resulted from adding up 

the time on task effect and the adjustments to the time on task effect by task and by person. When 

considering a proficient reader (skill level of b0p = 1.61) and an easy reading task (easiness of b0i = 

1.89), that is, a reading situation of low demand, the unadjusted negative effect of -.69 became much 

stronger, resulting in a negative time on task effect of -1.90 (plus line). However, in a situation of high 
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Figure 5. Time on task effect by task and skill level for reading. literacy (upper panel) and problem solving in technology-rich 

environments (lower panel). For combinations of two tasks (easy vs. hard) with two persons (less able vs. able), the 

probability of obtaining a correct response is plotted as a function of time on task. 
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demand, where a difficult reading task (easiness of b0i = -0.77) was completed by a poor reader (skill 

level of b0p = -1.79), the curve’s slope was no longer negative but even slightly positive, that is, 0.55 

(triangle line). In situations of medium demand, that is, a poor reader completing an easy task or an 

able reader completing a difficult task, the curves’ slopes are in-between. 

Problem solving.  In the integrated model, a positive time on task effect of β1 = 0.56 (z = 2.26, p = 

.02) was obtained. The variance of the by-task adjustment to the time on task effect was Var(b1i) = 

0.89, and that of the by-person adjustment was Var(b1p) = 0.11. The correlation between easiness of 

problem solving tasks and the by-task adjustment to the time on task effect was Cor(b0i, b1i) = -.63, 

and the correlation between individual skill level and the by-person adjustment to the time on task 

effect was Cor(b0p, b1p) = -.76. Again, the model comparison test indicated that model M4 fit the data 

significantly better than model M0, χ2(4) = 76.77, p < .001. 

The bottom panel in Figure 5 shows the probability of obtaining a correct response as a function of 

the time on task for two selected tasks completed by two selected persons. In a situation of low 

demand, that is, a proficient problem solver (skill level of b0p = 2.63) completing an easy task 

(easiness of b0i = -0.67), the time on task effect decreases dramatically and becomes even negative 

and was estimated as -0.62 (+ line in Figure 5). However, in the situation of high demand where a 

difficult task (easiness of b0i = -3.44) is completed by a poor problem solver (skill level of b0p = -1.66), 

the positive time on task effect of .56 becomes much stronger and was estimated as 1.69 (Δ line in 

Figure 5). If the demand is medium, that is, a less able person completes an easy task or an able 

person completes a difficult task, the curves’ slopes are in-between. 

Taken together, these results indicate that positive time on task effects are observed especially in 

highly demanding situations, where not-so-skilled readers or problem solvers are confronted with a 

difficult task. Presumably, they can partly compensate for task demands by allocating cognitive 

resources. If this interpretation holds true, differential time on task effects should be observable on a 

within-task level as well. Specifically, if it is the strategic allocation of processing time that drives a 

positive time on task effect in problem solving tasks and difficult reading tasks being encountered by 

poor readers, on a within-task level the positive time on task effect should be confined to the 

processing of task-relevant parts of the stimulus. We tested this hypothesis as a last step. 

Decomposing the Time on Task Effect at the Task Level (Hypothesis 4) 

Using fine-grained time information extracted from log files, we decomposed the global time on task 

into several components that reflect particular steps of task solution. This was done at the task level 

for the problem solving task “Job Search,” which required screening a search engine results page (see 

Figure 1, lower panel) and visiting multiple linked Web pages. Two of five Web pages in this task 

meet the criteria specified in the instruction and have to be bookmarked to obtain a correct 

response. In Hypothesis 4, spending more time on the two target pages was expected to indicate 

strategic behavior associated with a higher probability of successful task completion. In contrast, a 

negative effect was assumed for spending time on the search engine results page, which did not 
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provide any hints about the target pages. For the time spent on nontarget pages, a negative effect 

was also expected.  

First, logistic regression was used to predict the task success by time on task. The sample size for this 

analysis was 182. This analysis revealed a nonsignificant time on task effect of -0.29 (z = -0.59, p = 

.55). As a second step, task success was predicted by the time spent on the search engine results 

page, the time spent on the two relevant Web pages, and the time spent on the three irrelevant Web 

pages. The obtained effect for time spent on the relevant Web pages was positive and significant as 

expected, 0.96 (z = 2.53, p = .01), that is, spending more time on the target pages for evaluating the 

accessed information and monitoring the multiple criteria for constraint satisfaction was associated 

with a higher probability of achieving a correct response. In contrast, for the time spent on the 

search engine results page, a significant negative effect of -1.78 was revealed (z = -2.97, p < .01). The 

time spent on irrelevant Web pages was not significantly related to task success (estimated effect of 

0.13, z = 0.23, p = .82). As a measure of effect size, we computed Nagelkerke’s R2, which was .25, that 

is, about a quarter of the response variability could be explained by the component time predictors. 

This result pattern suggests that successful problem solvers quickly discarded the irrelevant search 

engine results page, whereas relevant pages meeting evaluation criteria were checked carefully. This 

pattern is fully compatible with the view that positive time on task effects in difficult tasks are due to 

a strategic allocation of cognitive resources, as already suggested by the moderation of the time on 

task effect by domain, task difficulty, and skill level. 

Discussion 
Computer-based assessment provides new possibilities to assess cognitive skills and underlying 

processes by measuring not only the outcome of a task but also behavioral process data that might 

be interpreted in terms of cognitive processes happening throughout task completion. This means 

that to some degree, data from computer-based assessments may be used to address research 

questions through means of process analysis that were previously confined to experimental research. 

This is of interest especially in combination with the rather large sample sizes obtained in educational 

assessments (compared to lab experiments). Thus, while there used to be a tradeoff— either go with 

small samples and deep process analysis or have large samples and test result data only— this 

tradeoff can be remedied to some degree by using process data from large-scale assessments. 

The goal of this study was to investigate the effect of time on task on task success in reading literacy 

and problem solving in technology-rich environments and to test potential moderating variables. Our 

central hypothesis was that the relative degree of strategic versus routine cognitive processing as 

required by a task, as well as the test taker’s acquired skill, determines the strength and direction of 

the time on task effect. Accordingly, our results revealed that the time on task effect was moderated 

by domain, task difficulty, and individual skill. 

Time on Task Effects in Reading Literacy 

For reading literacy, overall, a negative time on task effect was found, that is, brief times on task 

were associated with correct responses, and taking more time apparently was not related to greater 



 
 

 

26 
 
 

 

task success. Very slow respondents thus fail on the task. This observation especially concerns easy 

reading tasks as shown by the negative correlation between task easiness and the task-specific time 

on task effect, which means that for easy tasks the time on task effect was more negative than for 

difficult ones. To put it simply, in very easy tasks, the correct solution was either obtained quickly or 

never. In contrast, for difficult reading tasks, this association got weaker and in some instances was 

reversed. Taking individual differences in reading skill into account, these findings were consistently 

extended, that is, with increasing reading skill, the time on task effect got more negative, whereas it 

got weaker or even positive with decreasing reading skill. Thus, for poor readers completing hard 

reading tasks, time on task showed a positive effect, whereas for proficient readers working on easy 

tasks, a very strong negative effect was found. The latter result means that the few proficient readers 

who did not master the easy reading tasks took more time than the majority of proficient readers 

who were successful. In contrast, in a group of less skilled readers, this time difference between 

correct and incorrect answers in the same tasks was less pronounced, as shown by the weaker 

negative time on task effect. 

The observed result pattern that incorrect responses are associated with longer times on task has 

consistently been found for other untimed performance measures as well, for instance, general 

knowledge tasks (Ebel, 1953), matrices tasks (Hornke, 2000), figure series, number series, verbal 

analogy tasks (Beckmann, 2000), verbal memory tasks (Hornke, 2005), and discrimination tasks (for a 

review of reaction time research on this matter, see Luce, 1986). Hornke (2005) discussed how 

correct responses with short latencies are eye-catching. Incorrect responses in contrast may be 

preceded by an ongoing process of rumination and ultimately a switch to random guessing. This 

interpretation is consistent with our finding in that, especially for easy tasks, there is a strong 

negative time on task effect and also explains why, in easy reading tasks, generally skilled readers 

had a lower chance of getting the task correct when the response took longer. Similar effects were 

reported by Hornke (2000) and Beckmann (2000). 

Across the cognitive operations required in reading tasks, there was no significant variation of the 

time on task effect. Thus, differences in the time on task effect across tasks cannot be ascribed to the 

presence or absence of specific cognitive operations as outlined in the PIAAC framework. In line with 

our findings on the dependency of the time on task effect on task difficulty, the clusters of access, 

integrate, and evaluate tasks are not very well distinguishable by their level of difficulty. Other task 

features than the cognitive operations are hence responsible for the variation of the time on task 

effect with task difficulty. If our cognitive interpretation of time on task effects holds, it might be 

worthwhile to look for task features that drive task difficulty and differential time on task effects. 

Identifying these features might further contribute to clarifying the PIAAC reading tasks’ demands in 

cognitive terms and as such contribute to further advance the assessment framework. Therefore, as 

one future step, we intend to classify the PIAAC tasks, for instance, in terms of the transparency of 

the information, or the degree of complexity in making inferences (cf. OECD, 2009b). Task features 

such as these are not yet entirely covered by the aspects detailed by the PIAAC assessment 

framework. 
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Time on Task Effects in Problem Solving 

For problem solving, overall, a significant positive time on task effect was found: Long times on task 

were associated with correct answers and short times on task with wrong answers. Similar to 

reading, the time on task effect varied significantly across tasks. For easy tasks, it was weaker and 

around zero, whereas for difficult tasks, it became even more positive. This means that when dealing 

with challenging problems, spending more time was associated with higher probability of giving a 

correct response. Across individuals, poor problem solvers could benefit more from spending more 

time on a task than strong problem solvers. Although causal interpretations are not possible, this 

result suggests that poor problem solvers can compensate for their lack of general skill by putting in 

more effort when working on a particular task, especially when this task is hard to solve. Thus, the 

difference in time on task between correct and incorrect solutions was greater for weak problem 

solvers than for strong problem solvers, which is the reverse of the finding for reading. 

The results on the time on task effect for reading literacy and problem solving show that the 

moderating role of task difficulty and person’s skill are similar for both domains, even though the 

overall effect is very different. The time on task effect may become similar between the two domains 

when considering the extreme cases in which a skilled person encounters an easy task or a less 

skilled person engages in a difficult task. In the first case, the resulting time on task effect is negative 

(even for problem solving), and in the second case, it is positive (even for reading literacy). Thus, 

across domains the strength and the direction of the time on task effects seem to be governed by 

skill and difficulty in the same way. Both high skill levels and easy tasks presumably are associated 

with a large proportion of cognitive component processes that are apt to automatization (in easy 

tasks) or in fact automatized (in skilled persons), bringing about a negative time on task effect. In 

contrast, low skill levels and difficult tasks presumably are associated with the need to engage in 

controlled and thus time-consuming cognitive activity to a large extent, bringing about a positive 

time on task effect. 

Thus, on the one hand, problem solving and reading are conceived as involving different cognitive 

processes, and overall the relation of time on task to task success also clearly differs between the 

two domains. On the other hand, our results support the notion that combinations of tasks and 

persons form a continuum across the two domains ranging from automatic processing to controlled 

processing. Practicing a task may move a person–task combination to automatic processing. 

However, this is limited by the nature of the task. For instance, certain aspects of a problem solving 

task may become automated in skilled individuals, but not core aspects of problem solving, such as 

inducing rules or drawing conclusions. 

Our interpretations of the time on task effect are further backed by the in-depth analysis of the time-

taking behavior in the sample problem solving task “Job Search.” This analysis was based on time 

data that was assumed to reflect different steps of task solution and presumably information 

processing. It revealed that only for time spent on steps that are necessarily needed to solve the 

tasks, that is, to visit and evaluate the target pages for multiple criteria, a positive time on task effect 
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emerged, whereas for spending time on the noninformative search engine results page and the 

nontarget pages, negative or null effects were found. When spending time on the target pages, the 

problem solver is assumed to deal with the part of the problem space that enables one to move step 

by step to the knowledge state that includes the solution (Simon & Newell, 1971) or to integrate 

relevant information, rather than identifying various other aspects of the problem (Wirth & Leutner, 

2008). Thus, this finding supported our hypothesis that the positive time on task effect in problem 

solving tasks reflects the need for and the benefit from devoting time to strategic and controlled 

cognitive processing. This interpretation suggests that task success could depend on the time spent 

on relevant pages (however, time on task as well as task success might also be driven by a common 

cause such as motivation). The negative effect of time spent on the search engine results page may 

indicate the strategy to select Web pages based on the limited information provided there. Although 

this approach could in principal be useful to filter search results, in the given task the results page did 

not indicate whether search criteria would be met or not. Thus, lingering on a page that could not 

contribute to solving the task was in fact detrimental to succeeding. 

Time on Task and a Dual Processing Framework 

We derived our hypotheses on differential time on task effects both between and within domains by 

means of applying a dual processing framework (cf. Fitts & Posner, 1967; Schneider & Chein, 2003; 

Schneider & Shiffrin, 1977) to reading and problem solving tasks used in the PIAAC study. The 

hypotheses thus derived were confirmed; hence, our results are consistent with the notion that 

positive time on task effects reflect the strategic allocation of cognitive resources, whereas negative 

time on task effects reflect the degree of automatization. Although the findings are entirely 

consistent with the predictions derived from such a framework and further backed by analyses on a 

within-task level, this interpretation has to remain somewhat speculative for the time being. The 

information that can be gained from large-scale computer-based assessments (although providing 

much more information than traditional paper-and-pencil based assessments) is still limited. Usually, 

the information stored in log files is ambiguous as to its interpretation in cognitive terms. In this 

article, we have assumed that taking more time on more difficult tasks indicates engaged cognitive 

processing. Other interpretations of the pattern of results are yet conceivable. For instance, it might 

be the case that time on task effects also reflect differences in motivation, that is, test takers not only 

take more time to think about a task but also think harder—resulting in a confounding between 

depth of processing and time taken. Related to that, Guthrie et al. (2004) considered time on task as 

an indicator of engagement, which means to read a text attentively, concentrating on the meaning, 

and with sustained cognitive effort (see also Kupiainen et al., 2014). Issues such as these can only be 

resolved by combining the analysis of large-scale process data with research tools allowing for an 

even more fine-grained analysis of cognitive processes, such as eye movements or think-aloud 

techniques (see Rouet & Passerault, 1999). As a consequence, we aim at corroborating our results 

through experimental studies that combine actual large-scale testing materials and still more fine-

grained assessments of cognitive processes in the future. 
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Limitations 

In the present study, test takers were free to adapt their speed–accuracy compromise both within 

and between tasks, which has consequences on the interpretation of the obtained results. As the 

speed level of test takers was not controlled, the obtained variation in the association between time 

on task and task success across tasks may be due to different task difficulties as claimed in 

Hypothesis 2 or due to within-person differences in the selected speed level across tasks. However, 

the latter explanation does not seem plausible as there is empirical evidence for the assumption of 

stationarity of speed when completing power tests (cf., e.g., Goldhammer & Klein Entink, 2011; Klein 

Entink et al., 2009). Stationarity of speed is also implied by the fixed level of accuracy which is a 

standard assumption in item response models (cf. van der Linden, 2007). 

As we did not manipulate the speed level of test takers experimentally, we cannot conclude that the 

predictor time on task has any causal effect on task success, which, however, is suggested by the 

positive time on task effect in those tasks requiring a higher level of controlled processing. In 

contrast, in tasks that can be completed more automatically and for which a negative effect was 

revealed, time on task should rather be conceived of as an indicator of competence in addition to the 

task result. 

 As another limitation, the sample size of the present study and the number of responses per task, 

respectively, were quite limited for testing measurement models. Therefore, future research should 

aim at replicating the findings based on greater samples, for instance, from the PIAAC main study. 

Another important replication goal would be to investigate whether results on the time on task 

effect are comparable across countries. 

In PIAAC the construct of problem solving in technology-rich environments was newly developed as 

was the measurement procedure. Thus, future research will have to provide more information about 

this assessment’s validity and its predictive power. Moreover, the relation of problem solving in 

PIAAC to other problem solving measures and their theoretical underpinnings requires further 

clarification. There are several conceptual commonalities, for example, representing the difference 

between a current state and a goal state, defining a series of subgoals, and applying related 

nonroutine cognitive and behavioral operations to transform the given state into the targeted state, 

including progress monitoring. However, there are also remarkable differences. For instance, the 

construct of complex problem solving (cf. Funke & Frensch, 2007) assumes systems where 

complexity is defined by the number of elements and the relations among them. The problem solving 

process is comprised of the acquisition of knowledge by means of exploration and the application of 

the obtained knowledge. Although acquiring knowledge or information is also a key aspect of 

problem solving as defined in PIAAC, acquired knowledge in a complex problem solving task 

represents the explored system of elements and relations itself. In contrast, in PIAAC problem 

solving, the explored system is just the medium carrying the information that is required to solve the 

task. However, an unfamiliar computer environment and unknown functionality would turn the 

problem solving in technology-rich environments task into a complex problem solving task (for 
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technical problem solving, see, e.g., Baumert, Evans, & Geiser, 1998). Regarding our findings on 

problem solving as proposed by PIAAC, future research needs to show whether the pattern of results 

holds true also for other conceptions of problem solving that, for instance, are anchored in cognitive 

theory (see, e.g., Fischer, Greiff, & Funke, 2012) or used in other large-scale assessments such as the 

Programme for International Student Assessment (PISA; cf. Greiff, Holt, & Funke, 2013). 

Educational Implications 

The present study frames the meaning of time in information-processing tasks by referring to models 

of skill acquisition and related individual differences. Therefore, although the analyses are based on 

assessment tasks, our results allow for some tentative conclusions on educational procedures in 

reading and problem solving instruction. Our results indicate that for learning and applying higher 

level cognitive skills, required component skills should be well routinized. If there is no established 

routine processing, for instance, when a poor reader encounters difficult reading tasks, information 

processing needs to rely on strategic processing as indicated by the reversed positive effect of time 

on task on task success. This means that for poor readers to be successful, they need to switch to 

compensatory behaviors, that is, reducing reading rate, looking back in text, reading aloud, and 

pausing, and/or compensatory strategies, that is, shifting attention to lower level requirements and 

rereading text, to cope with their deficits. Following Walczyk’s (2000) compensatory-encoding model, 

“With enough time, any text can be vanquished!” (p. 565).  

From an instructional point of view this means that becoming a good reader or problem solver 

requires the development of self-regulatory and metacognitive skills necessary to know when an 

effortful, controlled processing mode is to be employed. In the controlled processing mode, 

appropriate compensatory mechanisms can be initiated that have been learned and incorporated 

before. This might, for example, mean that in the face of reading comprehension difficulties, a part of 

a text is reread or that in problem solving, time is taken to focus attention on relevant subgoals. 

As the individual time on task effect is assumed to reflect the way of processing information, it may 

help to further describe the individual performance level and to identify instructional needs. As 

suggested in Figure 4 (bottom left panel), average readers show a great variation in the time on task 

effect, suggesting various levels of automaticity of component skills. Moreover, the in-depth 

investigation of temporal patterns in highly interactive tasks such as problem solving tasks can point 

to deficits in the information-processing strategy (cf. Zoanetti, 2010). For instance, if, in the “Job 

Search” task, log file data would reveal that a problem solver spends much time both on nontarget 

pages and target pages, this pattern would suggest that the problem solver cannot process 

disconfirming information efficiently to quickly discard a nontarget page. 

From an educational measurement perspective, the present study suggests that the meaning of time 

on task is not uniform. Thus, when collecting time information across tasks and individuals that are 

heterogeneous in difficulty and skill level, respectively, the role of time and its interpretation may 

differ. Regarding item response models including time as a regressor, van der Linden (2007) argued 

that time can only be interpreted uniformly as an indicator of speed if the tasks do not differ 
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substantially in the amount of labor. In the present study where tasks differ considerably in the 

amount of information processing and problem solving, we take the different interpretations of time 

on task into account by letting its effect vary across tasks (random effect). 

All in all, the analyses and results reported here illustrate the potentials that lie in exploiting time on 

task, or fractions of it, that become available through computer-based assessments. They do 

however also clarify that any process measure must be cautiously interpreted, at least by taking a 

closer look at the particular tasks and their demands. Regarding the two constructs studied here, 

reading literacy and problem solving in technology-rich environments, our study proves them to be 

quite different in terms of cognitive processing. Skill, task difficulty, and time on task do interact in 

different ways. As Wirth and Klieme (2003) have shown based on student assessment in a German 

national extension to PISA, problem solving tests, especially computer-based problem solving tests, 

add to the traditional set of literacy dimensions. In structural models, problem solving skills can be 

clearly distinguished from traditional abilities such as reasoning (cf. Wüstenberg, Greiff, & Funke, 

2012). These structural analyses and our in-depth analyses of processing time provide evidence that 

problem solving skills have to be separated from traditional educational outcomes such as reading 

literacy. Problem solving is one of the most prominent examples of cross-curricular, nonroutine, 

dynamic 21st century skills that are currently aimed at as educational goals and covered in large-

scale surveys. Claims that these new skills are different from traditional outcomes have mainly been 

supported by pragmatic or philosophical arguments. Now, we see that even in terms of cognitive 

processing and time allocation, there is a difference between reading literacy and problem solving 

skills. 
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