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Abstract 

A model of online reading engagement is outlined. This model proposes that online reading 

engagement predicts dedication in digital reading. Dedication in digital reading according to 

the model is reflected in task-adaptive navigation, and task-adaptive navigation predicts 

digital reading performance over and above print reading skill. Information engagement is 

assumed to positively predict task-adaptive navigation, while social engagement is assumed to 

negatively predict task-adaptive navigation. These hypotheses were tested using OECD PISA 

2009 Digital Reading Assessment data from 17 countries and economies (N = 29,395). 

Individual task responses served as the primary unit of analysis. Linear mixed models were 

used to predict navigation behavior from the interaction of information and social online 

reading engagement with navigation demands. High information engagement was associated 

with more task-adaptive navigation behavior, as shown by significant positive interactions 

between information engagement and tasks' navigation demands. In contrast, high social 

engagement was associated with less adaptive navigation behavior, as shown by negative 

interactions between social engagement and navigation demands. Generalized linear mixed 

models were used to predict task performance by the interaction of navigation demands and 

navigation behavior. Adaptive navigation behavior predicted digital reading task performance, 

as shown by significant interactions between navigation behavior and navigation demands. 

These results are in support of the proposed model of online reading engagement. 

Keywords: hypertext; navigation; reading engagement; digital reading; PISA; log file 
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1 Introduction 

The aim of the present article is to outline a model of online reading engagement, and 

put forward a test of two crucial parts of this model. In a nutshell, this model assumes that 

long-term online reading habits (online reading engagement) predict task-adaptive navigation. 

Task-adaptive navigation means navigation behavior that is responsive to task demands, as 

information is accessed and processed as required by the task, while task-irrelevant 

information is discarded. Different effects are assumed for online reading engagement 

targeted at information seeking (information engagement), versus online reading engagement 

targeted at social interaction (social engagement). While information engagement is assumed 

to positively predict task-adaptive navigation, social engagement is expected to negatively 

predict task adaptive navigation Task-adaptive navigation according to the model predicts 

digital reading performance over and above print reading skill. These assumptions were tested 

in 17 samples of 15-year olds. 

1.1 Reading engagement 

As of 2014, over 2.4 billion people have access to the Internet worldwide (Miniwatts 

Marketing Group, 2012). The Internet has grown a major resource for dissemination of news, 

opinion, and knowledge. A person who for whatever reason is unable to access these 

resources will be cut off major streams of societal and political debate. Being in command of 

online reading skill is crucial for participation in 21st century societies, both in private and 

occupational contexts. For example, online reading skill will be required to successfully 

employ ICTs in daily (e.g. OECD, 2013), or occupational life (e.g. when engaging in the 

process of knowledge sharing using ICTs in the workplace, see Zhan, de Pablos, & Zhu, 2013 

and Zhang, Vogel, & Zhu, 2012). One predictor of reading skill in general is reading 

engagement (Guthrie, Wigfield & You, 2012). Reading engagement is specifically shaped in 

online reading, as online reading cannot perfectly be mapped upon print reading (e.g. Leu, 

Kinzer, Coiro, and Cammack, 2004; Rouet, 2006). Engaged reading is motivated, strategic, 
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knowledge-driven, and socially interactive (Guthrie et al., 2004; Guthrie et al., 2012). 

Motivated means that readers do not only read for external gains, but are curious for a text’s 

contents, or enjoy reading itself. Strategic means that they employ cognitive and 

metacognitive strategies such as summarizing, or monitoring comprehension. Knowledge-

driven means that readers use their prior knowledge to better understand a text, and use the 

text to increase their knowledge. Socially interactive means that readers engage with 

significant others in debating a text’s stance, or to share their reading experiences. Guthrie et 

al. (2012) proposed a framework in which these components of reading engagement are put 

into a causal order. In this framework, classroom practice and conditions impact motivations 

to read, which in turn impact behavioral engagement and dedication in reading. This latter 

processes, behavioral engagement and dedication, is what ultimately predicts reading 

competence (see also Wigfield et al., 2008). 

1.2 Model of online reading engagement 

The model of online reading engagement is depicted in Figure 1. While the model 

shares a number of assumptions with Guthrie et al.’s (2012) model of general reading 

engagement, it also makes some additional assumptions. Most importantly, it discriminates 

between a student level and a task level. Through this, the effects of student level variables, 

the effects of task level variables and their interactions can explicitly be modeled. 

1.2.1 Prediction of digital reading performance. The model seeks at predicting 

performance in digital reading tasks, a variable that is located at the task level. First, 

performance is predicted by a student’s print reading skills (path p1 in Figure 1). This is 

because reading digital text is reading in the first place, and thus skills involved in reading 

printed text such as word decoding, sentence integration, and situation model formation will 

impact performance in reading digital text as well. Second, digital reading task performance is 

predicted by the task, and a student’s engagement with that task. In reading digital text, one 

important part of task engagement is “navigation” (see Lawless & Schrader, 2008, for an in-
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depth discussion of the ‘navigation’ metaphor). Digital texts frequently come as hypertexts 

(e.g. Afflerbach & Cho, 2008). This means that the text is not being read linearly from 

beginning to end, but the contents is distributed across a number distinct pages, or ‘nodes’, 

which are interconnected through hyperlinks. It is thus left to the reader to find an appropriate 

selection of text materials. This is even more so as reading digital text typically not only 

requires selecting relevant text materials, but also not getting distracted by non-relevant 

materials, be it parts of the text, or accompanying media such as movies, animations, or 

photos. Previous research has shown that students who get distracted by task-irrelevant 

contents (“feature explorers”, Lawless & Kulikowich, 1996) achieve less in comprehension 

(see also Salmerón, Kintsch, & Cañas, 2006). These findings are very well aligned with 

Guthrie et al.’s (2012) general description of behavioral engagement in reading, who coin 

behavioral engagement in reading ‘dedication’ (p. 604, Fig. 29.1). It is those students who do 

a good job in selecting text contents (e.g. Cress & Knabel, 2003; Hsu & Schwen, 2003; 

Naumann, Richter, Christmann & Groeben, 2008; Puntambekar, Stylianou, & Hübscher, 

2003; Richter, Naumann & Noller, 2003) and organizing text contents (e.g. Amadieu, Tricot, 

& Mariné, 2009; Salmerón, Cañas, Kintsch, & Fajardo, 2005; Su & Klein, 2006; 

Puntambekar & Stylianou, 2005; Richter, Naumann, Brunner & Christmann, 2005) who 

perform well in digital reading. Digital reading performance is thus expected to be predicted 

by navigation (path p2 in Figure 1). 

Navigation behavior is a broad construct, and can be measured by a multitude of 

indicators. These may e.g. encompass the linearity or connectedness of a navigational path 

(e.g. McEneaney, 2001; Richter et al., 2003), the semantic coherence of a navigational path 

(e.g. Salmerón et al., 2005), or the attendance to task-relevant pages (e.g. Naumann et al., 

2008), or the number of page visits overall (e.g. Su & Klein, 2006). How one particular 

instance of navigation behavior, e.g. the number of page visits, will be associated with digital 

reading performance is moderated by task demands. Consider integrating information from 
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multiple pages, vs. accessing a piece of information from one page. In case of a complex task 

requiring a multitude of pages to be accessed, the number page visits will positively predict 

task performance. In a simple task, however, where only one page needs to be accessed, a 

large number of page visits is not task-appropriate behavior and is likely to be negatively 

associated with performance (interaction i1 in Figure 1). 

1.2.2 Predicting navigation behavior. Navigation behavior according to the model is 

predicted by the task (see path p3 in Figure 1). In general, students will adapt their navigation 

behavior according to task characteristics. For example, in a complex task that requires the 

student to integrate information from multiple pages, their navigation will entail more page 

visits and re-visits than in a simple task that needs retrieval of information that can be found 

on one single page. On the student level, navigation behavior is assumed to be predicted by 

online reading engagement. Different predictive patterns are expected for different 

dimensions of online reading engagement. As previous factor-analytic work has shown, 

online reading behaviors form to distinct dimensions, one that entails information-seeking 

activities (information engagement) and one that entails activities directed at social interaction 

and entertainment (social engagement, see Lee & Wu, 2013; OECD, 2011, chapter 4). Both 

from theory and previous research, these two dimensions are assumed to have different 

associations with navigation behavior. 

1.2.2.1 Information engagement and navigation behavior. Information seeking 

online reading activities (information engagement) comprises behaviors such as reading 

online news, using online encyclopedia or dictionaries, or using the internet to search for 

specific information. Activities such as these are frequently carried out while studying. 

Information seeking activities, such as searching the Internet for a specific topic for a school 

assignment, often require the student to carefully evaluate search results, to judge whether or 

not to follow the hyperlinks encountered, and to integrate the contents of the accessed 

documents into a coherent mental model. In line with these considerations, information 
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engagement has been found to be positively associated with reading skill (Lee & Wu, 2013), 

and online reading skill (OECD, 2011). There is however no evidence yet regarding the 

association between information engagement and navigation behavior. The model presented 

here assumes the following: Information engagement will strengthen a student’s skill to 

navigate adaptively. A student high in information engagement will show a particular instance 

of navigation behavior, such as a high number of visits and re-visits to hypertext pages, 

according to task demands. Thus, in statistical terms, the association between information 

engagement and navigation behavior will be moderated by task demands (interaction i2 in 

Figure 1).  

 1.2.2.2 Social engagement and navigation behavior. Social interaction oriented 

online reading activities (social engagement), such as participating in social networks, E-

mailing, or playing collaborative games that involve reading online (e.g. Rama, Black, van Es, 

& Warschauer, 2012; Thorne & Black, 2007), have been reported to relate negatively to 

academic achievement and reading skill. Jacobsen and Forste (2011) found that use of social 

networking sites, use of cell phones for texting, and online gaming had all negative 

associations with GPA, and both Kirschner and Karpinski (2010), and Junco (2012a) found 

use of Facbook to be negatively related to students’ GPA. Pfost, Dörfler and Artelt (2013) 

found use of E-Mail to be negatively associated with reading skill, even after controlling for a 

comprehensive set of background variables, including most importantly reading skills 

measured two years earlier. Lee and Wu (2013) found a negative association between social 

entertainment online activities and reading skill. Their measure of social entertainment online 

activities comprised use of Collaborative Online Games, E-Mail, Chat, Social Networking 

sites, and maintaining a personal Website or Blog. 

 What factors might contribute to these negative associations? Social interaction 

oriented online reading activities are often carried out in a playful manner, and compete with 

studying for time and cognitive resources. For instance, both Jacobsen and Forste (2011) and 
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Junco (2012b) found the use of Facebook to be negatively associated with student 

engagement and time spent for class preparation. Social networking sites are often used in 

parallel to another task (Kirschner & Karpinski, 2010). Calderwood, Ackerkman and Conklin 

(2014) observed 60 students’ multitasking behavior during a 3-hour homework session. They 

found use of the computer and mobile phone for communication (e.g. reading e-mail) to be 

amongst the most prevalent multitasking activities. Multitasking is bound to impair 

comprehension and learning (e.g. Fox, Rosen and Crawford, 2008; Sana, Westen & Cepeda, 

2013). Especially in online reading, a careful selection of reading materials is crucial to 

comprehension and learning outcomes, which also means discarding non-relevant materials 

(e. g. Lawless & Kulikowich, 1996; Salmerón et al., 2006). Speaking to this, Alloway and 

Alloway (2012) found that in a go/no-go task, Social media heavy users were more likely to 

be distracted by no-go stimuli, i.e. stimuli they were supposed not to attend to. 

To date however, there is no evidence that links social engagement to navigation. 

From the considerations and studies cited above it would seem that students high in social 

engagement are less prepared for the cognitively demanding task of when to access pages 

while reading online, and which pages to discard. Thus, in contrast to what is expected for 

information engagement, students high in social engagement can be expected to act less 

adaptively than students low in social engagement (interaction i3 in Figure 1). 

1.3 The present research 

Neither the idea that navigation predicts digital reading performance conditional on 

task demands over and above reading skill, nor the idea that information and social 

engagement predict navigation differently have been addressed empirically (to the best of the 

author’s knowledge). The present research aims at a contribution to filling in these gaps. This 

article presents two analyses, the first of which examines how online reading engagement 

relates to navigation behavior, and the second examines how navigation behavior relates to 

digital reading task performance. Other than in previous studies that utilized data from the 
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Digital Reading Assessment (e.g. Lee & Wu, 2013) individual task completion processes, and 

outcomes, serve as the primary unit of analysis, in accordance with the task layer in the model 

of online reading engagement (Figure 1). This makes it possible to actually predict 

performance from behavior, as for each individual task it is recorded how an individual 

student engages with this task before giving a correct or incorrect response. Clearly, however, 

prediction here does not imply causation. 

As an indicator of navigation, the number of visits to task-relevant pages, including re-

visits, is considered. This indicator depicts information access behavior, which is one aspect 

of navigation, and can be assumed to predict performance conditional on task demands. 

Consider a task that needs visiting many pages (high access demands task). In such a task it is 

beneficial to frequently visit, and re-visit relevant pages. Frequent visits in this case will mean 

that a student comprehensively covers the materials, as is shown by a high correlation of this 

variable on the student level with the percentage of relevant pages accessed. Across countries 

and economies, this correlation ranged from .69 to .91 (Md = .83). Furthermore, if the student 

is engaged with a complex stimulus, re-visiting relevant pages can be a useful strategy. This is 

because in such tasks, information from multiple pages has to be integrated that will be 

difficult to bear in mind simultaneously. In line with this reasoning the number of visits to 

relevant pages has positive associations with learning outcomes in high access demands tasks 

(e.g. Naumann et al., 2008; Puntambekar et al., 2003). 

Consider in contrast a task that needs visiting only few, or even only one single page 

(low access demands task). In such a task, frequent visits to relevant pages will result from 

behavior that is not directed at task completion by moving back and forth between relevant 

and non-relevant pages. Visiting and re-visiting task-relevant pages according to task 

demands is a strong determinant of learning outcomes (Gräsel, Fischer, & Mandl, 2001; 

Naumann, Richter, Flender, Christmann, & Groeben, 2007; Naumann et al., 2008; 
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Niederhauser, Reynolds, Salmen, & Skomolski, 2000; Puntambekar & Stylianou, 2005; 

Richter, Naumann, & Noller, 2003). 

The questions (1) how access behavior relates to online reading engagement and task 

demands, and (2) how digital reading performance relates to access behavior, are addressed 

using data from the 2009 PISA Digital reading assessment. The present research thus uses the 

strength of large scale data bases that provide large samples and generalizability across 

countries and cultures. This is especially important, as different cultures might have a 

different take on interacting on line (e.g. OECD, 2011; Zhang, Ordóñez de Pablos, & Xu, 

2014). At the same time, in the Digital Reading Assessment log files of students’ task 

completion processes were recorded. Through this, processes such as access behavior can be 

analyzed at the level of individual tasks. This approach was traditionally only employed in 

small-scale lab studies.  

1.4 Hypotheses 

1.4.1 Access behavior. From the above model of online reading engagement it 

follows that online readers adapt their navigation behavior to the task at hand. This means that 

there is an effect of access demands, i.e. the number of relevant pages within a task, on access 

behavior, i.e. the number of visits and re-visits to task-relevant pages (Hypothesis 1). The 

model also posits that especially readers who are regularly engaged in information seeking 

activities, such as reading online news or using online encyclopedia, adapt their behavior to 

task demands. We can thus assume a positive interaction of information engagement and 

access demands (Hypothesis 2a). According to this reasoning, in high access demands tasks, 

higher information engagement will be associated with more information access (Hypothesis 

2b). In low access demands tasks, in contrast, higher information engagement should be 

associated with less information access (Hypothesis 2c). 

A reverse pattern is expected for social engagement, i.e. the engagement in social 

interaction related online reading activities, such as using online forums or virtual 
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communities. A negative interaction between access demands and social engagement is 

assumed (Hypothesis 3a): In high access demands tasks, higher social engagement according 

to this reasoning is associated with less information access (Hypothesis 3b). In low access 

demands tasks, in contrast, higher social engagement will be associated with more 

information access (hypothesis 3c). 

1.4.2 Prediction of task performance. The model of online reading engagement 

assumes a positive association between print reading skill and the odds of succeeding in a 

digital reading task (Hypothesis 4). Over and above the effect of print reading skill, a positive 

effect of access behavior on performance in digital reading tasks is expected (Hypothesis 5). 

This effect however is assumed to be qualified by access demands. A positive interaction is 

expected between access behavior and access demands (Hypothesis 6a). This interaction is 

assumed to take on a positive sign since in high access demands tasks, a positive association 

of access behavior and performance is expected (Hypothesis 6b), while a negative association 

is expected in low access demands tasks (Hypothesis 6c). 

2 Method 

2.1 Subjects 

 Subjects were those students that participated in the PISA 2009 digital reading 

assessment for whom complete and valid log files were obtainable, who came from those 

countries and economies that also participated in the ICT familiarity questionnaire, and for 

whom information on information and social online reading engagement was available (N = 

29,395). Drop-out due to non-availability of log files was low, and amounted to 1.3% (or 417 

cases) of the original sample in total, and 0% to 4.6%. Detailed demographic information is 

provided in Online Supplement Table 1. 

2.2 Materials and Instruments 

 2.2.1 Digital Reading Performance. Students’ performance in each digital reading 

task was measured through their graded task responses in the PISA 2009 Digital Reading 
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Assessment (0 indicating no credit, 1 indicating credit). The Digital Reading Assessment 

comprised of 29 items, distributed across nine units. A unit consisted of a text stimulus and 

between one and four tasks. Each student received six units, comprising either 18 or 19 tasks. 

The tasks presented online text materials in a simulated browser environment that mimicked 

typical features of commercial web browsers such as Internet Explorer, Firefox, Opera, or 

Chrome (see Figure 2). The texts represented genres typical for online text at the time the 

assessment was conceived (April-October 2007), such as blogs, websites, e-mails, or forums. 

Each task was situated in a hypertext environment consisting of multiple texts and pages, e.g. 

a search engine results page linking several web sites, which comprised multiple pages. 

Navigation was required to different degrees in different tasks. Digital reading tasks varied as 

to the number of task-relevant pages within a stimulus. A page was considered task-relevant 

(a) if it contained information that was required to complete a task, (b) if it contained 

information that could be assumed helpful to complete a task, or (c) if it was needed to 

achieve the navigation required for the task (see OECD, 2011, p. 91). The Unit “I want to 

help” for example features a girl named “Maika”. Maika wants to take up a volunteer job and 

writes about this intention in her blog. In task 4 of this unit, students are asked to find, and 

recommend to Maika, a volunteering opportunity that fits her requirements, and explain to her 

in an E-mail why they think that this opportunity is suitable. To achieve this, they have to use 

a website from a non-profit organization called ‘I want to help’, that can be accessed through 

a link in Maika’s blog entry. On the Home page of this website, a link has to be accessed 

leading to a page where four current opportunities are offered, two of them fitting, and two of 

them not fitting Maika’s requirements. Each of the opportunities can be seen in further detail 

by clicking a link next to it. Each opportunities page has a link labeled ‘E-mail this 

opportunity to a friend’, that opens a form where an E-mail message can be entered and sent.  

In this task, the following pages are considered task-relevant: (1.) Maika’s blog. This 

page contains information students have to use concerning Maika’s requirements. (2.) The ‘I 
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want to help’ website’s Home page. This page is required for navigation. (3.) A page ‘About’ 

where Maika introduces herself as to her personality and interests. This page features 

information that is relevant to judge one of the volunteering opportunities as being suitable for 

Maika. It does not have to be used to solve the task, but is relevant for one out of two suitable 

task solutions. (4.) A page ‘Latest opportunities’ within the ‘I want to help’ site linking the 

various volunteering opportunities. This page is both required for navigation and contains 

information on which two of the four opportunities can already be discarded as not fitting 

with Maika’s specifications. (5.) and (6.) The ‘opportunity details’ pages for each of the two 

suitable volunteering options. Either one of these two pages has relevant information, 

indicating that the respective opportunity fits with Maika’s requirements. (7.) and (8.) The 

‘send e-mail pages’ for each of the two fitting opportunities. (9.) and (10.) A confirmation 

page, where, for each opportunity, students can either eventually send their message, or 

choose to further edit it using an “Edit your message” button. (11.) A page confirming the E-

mail has been sent. (12.) and (13.) A “Site map”, and a “Resources” page within the “I want 

to help” website. These pages are not required for task completion. They can, however, from 

their labels, be considered useful for navigation (“Site map”) or considered offering further 

opportunities (“Resources”). Thus, this task comprises 13 relevant pages. The shortest 

possible navigation route requires visiting seven pages. It is important to note that in each task 

the text stimulus offered many pages that were not relevant, but accessible. In the sample task, 

these were e. g. a page where a student could directly contact the ‘I want to help’ organization 

for taking up a volunteering job for themselves (rather than recommending it to someone 

else). This page was not relevant as students were explicitly instructed to recommend a 

volunteering opportunity to Maika. Also, the pages offering the two not suitable options were 

not relevant. This was because students could identify these two pages offered non-suitable 

options without actually visiting them. This task, as well as other released tasks from the 
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questionnaire, which collects information on students’ background (e.g. gender, socio-

economic background), and reading attitudes, practices, and strategies. After this, they 

completed the ICT familiarity questionnaire, asking for students’ availability and use of ICT, 

both at home and at school, as well as their attitudes towards, and confidence in using ICT. 

Then the computer-based Digital Reading Assessment was administered. For this assessment, 

a minimum of 10 students per school were sampled from those students who had also 

completed the printed assessment. The Digital Reading Assessment took 40 minutes. Before 

the actual test, students received a tutorial where they learned how to operate the interface and 

simulated web browser. The assessment was carried out in a secure test environment. Data 

were collected using USB devices. Throughout the assessment, students’ responses and the 

sequence of actions they took through test completion (clicks) were recorded in log files. 

2.4 Data analysis and modeling approach 

Analyses were carried out country-wise. This provided 17 independent estimates for 

each effect. 

2.4.1 Predicting access behavior. To predict access behavior, a linear mixed model 

(LMM) approach was used. In an LMM, in addition to the fixed effects of the predictors, 

random effects are included. In the present case, a random person effect (corresponding to 

person-specific access behavior), and a random item effect (corresponding to item-specific 

access behavior) were included. To model a random person effect in the present analyses is 

critical for the following reason. A model without the specification of such an effect would 

assume that all the between-persons variance can be completely explained by person level 

covariates (online reading engagement and control variables). Put differently, it would be 

assumed that after controlling for person level covariates, observations coming from the same 

person were independent from one another, which is an unrealistic assumption.  

The same logic applies to items. A model not specifying a random effect for items 

would make the assumption that all the between-items variance can be explained by item 
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per one standard deviation change in the respective predictor variable. All predictors were 

entered simultaneously. Models were estimated using the R environment (R development 

Core Team, 2012) with the package lme4 and the function lmer (Bates, Maechler, & Bolker, 

2012). Meta-analyses were conducted using the package metafor (Viechtbauer, 2010). 

As a measure of effect size, the model-expected difference in the number of relevant 

page visits between a student or a task low (-1 SD) vs. a student or a task high (+ 1 SD) in 

each predictor variable is reported (e.g. Schielzeth, 2010). These effect sizes can be 

interpreted as follows. OECD (2011) found that aggregated across all tasks completed by a 

student, each additional visit to task-relevant pages per student accounted for an increase of 

2.4 points on the PISA reading scale. With 18 or 19 tasks in the assessment per student, 1 

additional visit to task relevant pages per task would amount to an increase in the predicted 

score of between 43 and 45 on the PISA scale, corresponding to a large effect. Thus, as a rule 

of thumb, effect sizes of 1 or above can be described as large, effect sizes between 0.5 and 1 

can be described as medium, and effect sizes smaller than 0.5 can be described as small. 

An alpha-level of .05 was chosen. When hypotheses implied an effects’ direction, tests 

were one-tailed. Because each country-specific model tested five hypotheses on the same data 

set each, Bonferroni correction was applied, arriving at an operational alpha level of .01. In 

accordance with suggestions by Card (2012), no Bonferroni correction was applied for meta-

analytic tests. 

3.1.1 Random effects. In each country, access behavior varied mostly between tasks, 

next between students, and least between schools. Estimates of random effects for tasks, 

students and schools are provided in Online Supplement Table 2.  

3.1.2 Fixed effects. Only results for the hypothesis-relevant fixed effects are reported. 

Estimates of the effects for the control variables are provided in Online Supplement Table 3. 

3.1.2.1 Access demands. In each country, there was a significant effect of access 

demands (see Table 2 column 3). These effects were large (Table 2, column 4). In general, 
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All together these results suggest the following: Even after controlling for a 

comprehensive set of relevant background variables, and taking into account print reading 

skill, students’ performance in digital reading tasks was predicted by the number of visits and 

re-visits to task-relevant pages. This relation was strong especially for tasks where content 

access behavior actually behavior meets task demands, i.e. in tasks that require the student to 

visit, and possibly re-visit, task-relevant pages to a large degree. In contrast, in tasks that did 

not require students to visit and re-visit task-relevant pages to a large degree, the number of 

visits to task-relevant pages was much less predictive overall. It should be noted that in low 

access demands tasks the relation between access behavior and performance still came out 

positive. 

4 Discussion 

The present results are the first to give evidence of an association between information 

seeking online reading engagement and adaptive navigation, specifically content access 

behavior, in digital reading. The opposite association was found for social interaction oriented 

online reading engagement: Students high in social interaction online reading engagement 

tended to behave less adaptively in digital reading. The present research also is the first to 

show how the association of content access behavior in digital reading is conditional on task 

demands. Although the predicted negative association between content access and task 

performance in low access demands tasks was not found, the interaction between task 

demands and access behavior was strong, and reliably found in 17 countries and economies, 

and it was in the expected direction: Digital reading performance was especially strongly 

predicted by access behavior in high access demands tasks, and much less so in low access 

demands tasks. 

4.1 Model of online reading engagement 

The present results thus confirm two important predictions made by the model of 

online reading engagement depicted in Figure 1. First, task-appropriate content access 
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behavior in online reading predicted task performance, even after controlling for a 

comprehensive set of background variables, with reading skill among them. Thus, content 

access behavior is apparently one crucial aspect of digital reading that cannot be mapped upon 

a students’ skill in reading generally. This result is in line with previous analyses that found 

navigation behavior to predict hypertext comprehension over and above reading skill 

(Naumann et al., 2008; OECD, 2011; Salmerón & García, 2011).  

Second, task-appropriate content access behavior was positively predicted by 

information engagement, while it is negatively predicted by social engagement. One possible 

explanation for this set of results is the mindsets, or motivational states, that govern the 

typical usage of social online media. While social networking sites or even interactive online 

games (e.g. Rama et al., 2012) might be used for educational purposes, mostly they are not 

(e.g. Junco, 2012b; Kirschner & Karpinski, 2010). In other words, by using this media, 

students do not regularly cognitively engage in demanding tasks involving the thorough 

evaluation of hyperlinks as to their potential relevance for the task at hand. Thus, using social 

online media most likely does not result in developing the skills needed for task-adaptive 

navigation, or more specifically, content access behavior. In contrast, these skills are most 

likely practiced through the use of information oriented online media such as encyclopedia or 

news websites.  

4.2 Is information engagement beneficial to digital reading performance? 

Yes, it might be. The present research found evidence that information oriented online 

reading engagement positively relates to adaptive navigation. Specifically, students high in 

information engagement made more visits to task-relevant pages in high access demands 

tasks. Since visiting task-relevant pages is strongly predictive of task performance in high 

access demands tasks, it is likely that these students show improved digital reading 

performance as well. As OECD (2011, ch. 4) put it: “Most of the digital reading tasks [that 

were analyzed in this research, AUTHOR] call for searching-information strategies and 
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navigation, skills that can be developed or reinforced by repeated contact with online 

searching-information practices” (p. 137). What is more, students high in information 

engagement behaved more parsimoniously when they encountered a low access demands 

task. In such a task, that requires visiting only one or two pages, students high in information 

engagement visited those one or two pages. What they apparently did not was to visit yet 

other pages that were not relevant to the task, and then navigated back, thereby unnecessarily 

increasing the count of visits to task-relevant pages. 

4.3 Is social engagement detrimental to digital reading performance? 

Probably not. What the present research showed was that high social online reading 

engagement was associated with less adaptive a style of navigation. However, meta-

analytically, this did not mean that students high in social engagement fell short in high access 

demands tasks in terms of access behavior. Rather, in low access demands tasks, they did 

more than was necessary. Doing more than what is necessary in low access demands tasks 

however seems not harmful: In low access demands tasks, the association between the 

number of visits to task-relevant pages and performance was still positive. Thus it seems that 

while the less adaptive navigation done by students high in social engagement might impair 

the efficiency of their navigation, it does not harm the effectiveness. So on the one hand there 

may be concern that extensive use of e.g. social networking sites negatively impacts 

“traditional” academic achievement measures (e.g. Junco, 2012a; Pfost et al., 2013). This on 

the other hand does not mean that it also negatively impacts students’ new literacy skills. 

Seemingly however, it is also not hugely beneficial. 

4.4 Educational implications 

 As will be pointed out in more detail in section 4.5, the nature of the present data is 

correlational. This means that conclusions as to educational implications that rely on a causal 

interpretation of the effects reported in this article are tentative at best. This said, there 

appears to be some evidence that students might fail in digital reading that require accessing 
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relevant pages to a certain degree specifically because they are unable to do the navigation 

that is required. This is indicated by the strong effect of the number of visits to relevant pages 

on task performance in high access demands tasks. This could mean that navigation and on 

line search skills, which many students are not in command of (e.g. Keil & Kominski, 2013; 

OECD, 2011; Salmerón, Cerdán, & Naumann, 2015) should receive more attention in formal 

education. This notion is also supported by the finding that students’ reading engagement 

targeted at online information search has a positive association with task-adaptive information 

access behavior, which presumably comes from practice (see above, section 4.4). If this 

interpretation was correct, a process that now relies to a large degree on students’ habitual on 

line information searching on line reading behaviors, the skills obtained from these habitual 

behaviors could be substantially strengthened if they were taught in classrooms. 

4.5 Limitations and final conclusions 

 Most of the research that utilizes large scale data to answer substantive research 

questions is correlational. While using large scale data provides obvious advantages (large 

samples, cross-country comparability), cross-sectional designs pose obvious limitations to the 

conclusions that can be drawn from these data sets. While we can statistically predict 

students’ adaptive navigation from their past online reading engagement, we do not know if in 

fact information seeking online reading engagement is causally relevant for adaptive 

navigation, as supposed by the model discussed in section 1.2. Maybe the latent ability to 

adaptively navigate is responsible both for a students’ observable adaptive navigation and 

their observable online reading engagement. Most likely engagement and adaptive navigation 

have a reciprocal relation (see e.g. Stanovich, 1986; 2000). Also, large-scale assessment 

studies usually target well-defined populations, 15-year olds in the case of PISA. This of 

course means that although the samples provide good variation in terms of social background 

or intellectual ability, future research is needed to generalize the present findings to other age 

groups. 
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A second limitation is that the present research did not dig deep into between-country 

variation. While some of the effects found in this study were consistent across countries, 

others were not. For example, while the interaction between social engagement and access 

demands meant that in nine countries highly socially engaged students navigated less 

adaptively, it meant the opposite for another four countries. Future studies should address this 

between-country variation in more detail, also as the number of countries that participate in 

the Digital Reading Assessment grows, thus providing a stronger data base for analyzing 

between-country variation (OECD, 2014). 

A third and final limitation comes from the somewhat limited measure of both 

information seeking and social oriented online reading engagement. As pointed out in the 

writings of Guthrie and colleagues (e.g. Guthrie et al., 2012), reading engagement, and thus 

on line reading engagement, encompasses more than more or less frequently using certain 

types of online media. For example, in the present research no information was available as to 

for which purposes online texts such as news, or social networks, were used. In fact, while 

overall the use of social networking sites such as Facebook has negative associations with 

achievement and skill, the use of Facebook for a few very specific purposes, such as sharing 

interesting links, has indeed positive associations with academic achievement (Junco, 2012a). 

It will be worth wile to investigate in future studies the associations of using social online 

media for specific purposes with adaptive navigation and proficiency in digital reading. These 

analyses also might point at how social on line media can be utilized for teaching both 

traditional and new literacy skills. 
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Table 1 
Descriptive statistics and correlations of all variables in the study (complete sample) 
     Correlations 

 M (SD) Min. Max. 1 2 3 4 5 6 7 8 9 

1. Performance a, d 0.69 (0.46) 0.00 1.00          

2. Information Access a 4.32 (5.31) 0.00 88.00 .15e         

3. Access Demands b 3.62 (3.42) 1.00 14.00 .05e .63        

4. Information Engagement 0.71 (1.37) -5.23 4.64 .06e .03 .01       

5. Social Engagement -0.04 (0.81) -2.01 2.14 -.01e .00 .01 .34      

6. Print reading skill 506.27 (99.05) 0.00 884.66 .29e .10 .03 .18 -.04     

7. Use of ICT at home 0.03 (0.95) -4.19 1.41 .04e .00 .01 .19 .33 .07    

8. Use of ICT at school 0.10 (0.94) -2.79 1.80 .01e -.01 .01 .06 .12 .02 .24   

9. Genderc 0.51 (0.50) 0.00 1.00 .05f .00e .00e -.02e -.05e .17e -.09e .01e  

10. SES 49.68 (16.13) 16.00 90.00 .12 .04 .02 .12 .05 .29 .24 .06 -.02 

Note. Correlations are Pearson product-moment correlations, unless noted otherwise. Means and standard deviations are unweighted. N = 29,395 
students. 
a I = 524,771 task responses. b K = 29 tasks. c Dummy-coded, Boys = 0, Girls = 1. d Dichotomous, 1 = credit, 0 = no credit. e Point-biserial 
correlation. f Phi-coefficient. 
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Table 3 
Prediction of information access: Simple slopes of information and social online reading engagement 
 Information 

engagement at 
access demands = +1SD 

 Information 
engagement at 

access demands = -1SD 

 Social 
engagement at 

access demands = + 1SD 

 Social 
engagement at 

access demands = - 1SD 

Country b(SE) 
Pred. 
Diff. b  b(SE) 

Pred. 
Diff. c  b(SE) 

Pred. 
Diff. d  b(SE) 

Pred. 
Diff. e 

AUS 0.41 (0.03)a 0.82  -0.16 (0.03)a -0.33  -0.11 (0.03)a -0.22  0.09 (0.03)a 0.17 
AUT 0.25 (0.03)a 0.51  -0.15 (0.03)a -0.29  -0.06 (0.03)a -0.12  0.08 (0.03)a 0.17 
BEL 0.21 (0.02)a 0.42  -0.05 (0.02)a -0.10  -0.07 (0.02)a -0.14  0.07 (0.02)a 0.14 
CHL 0.20 (0.05)a 0.41  -0.14 (0.05)a -0.29  0.10 (0.05) 0.19  -0.09 (0.05) -0.17 
SWE 0.27 (0.03)a 0.54  -0.06 (0.03)a -0.13  -0.10 (0.03)a -0.20  0.07 (0.03)a 0.13 
DNK 0.07 (0.04)a 0.14  0.01 (0.04) 0.02  -0.04 (0.04) -0.07  0.02 (0.04) 0.05 
ESP 0.22 (0.04)a 0.44  -0.08 (0.04)a -0.16  0.05 (0.04) 0.09  -0.08 (0.04) -0.15 
POL 0.34 (0.04)a 0.67  -0.14 (0.04)a -0.28  0.05 (0.04) 0.11  -0.02 (0.04) -0.03 
HKG 0.25 (0.05)a 0.50  -0.12 (0.05)a -0.25  -0.01 (0.05) -0.03  0.05 (0.05) 0.10 
HUN 0.36 (0.04)a 0.73  -0.17 (0.04)a -0.33  -0.05 (0.04) -0.11  0.06 (0.04)a 0.12 
IRL 0.26 (0.04)a 0.52  -0.08 (0.04)a -0.16  0.01 (0.04) 0.02  0.03 (0.04) 0.07 
ISL 0.16 (0.05)a 0.31  -0.02 (0.05) -0.05  -0.06 (0.04) -0.11  0.10 (0.04)a 0.20 
JPN 0.15 (0.05)a 0.30  -0.09 (0.05)a -0.18  0.15 (0.05) 0.30  -0.01 (0.05) -0.01 
KOR 0.17 (0.04)a 0.33  -0.06 (0.04) -0.12  -0.21 (0.04)a -0.41  0.11 (0.04)a 0.21 
MAC 0.28 (0.04)a 0.56  -0.11 (0.04)a -0.21  -0.01 (0.04) -0.03  0.07 (0.04)a 0.14 
NOR 0.10 (0.03)a 0.21  0.02 (0.03) 0.04  -0.12 (0.03)a -0.23  0.05 (0.03)a 0.10 
NZL 0.45 (0.04)a 0.90  -0.10 (0.03)a -0.21  0.13 (0.03) 0.26  0.01 (0.03) 0.02 
Note. Effect sizes for insignificant effects are printed in italics. 
a p < .05 (one-tailed tests). b Effect size estimate: Predicted difference in the umber of visits to task-relevant pages between a student high (+ 1 SD) and a student 
low (- 1 SD) in information online reading engagement within a high navigation demands task. c Effect size estimate: Predicted difference in the umber of visits to 
task-relevant pages between a student high (+ 1 SD) and a student low (- 1 SD) in information online reading engagement within a low navigation demands task. 
dEffect size: estimate: Predicted difference in the umber of visits to task-relevant pages between a student high (+ 1 SD) and a student low (- 1 SD) in social online 
reading engagement within a high navigation demands task. e Effect size estimate: Predicted difference in the umber of visits to task-relevant pages between a 
student high (+ 1 SD) and a student low (- 1 SD) in social online reading engagement within a low navigation demands task.
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Table 5 

Prediction of task performance: Simple slopes 

  Access behavior at 

access demands 

= +1 SD 

 

 

 

Access behavior at 

access demands 

= -1 SD 

Country  b(SE) Pred. Diff.b  b(SE) Pred. Diff.c 

AUS  0.51 (0.03)a 0.17  0.18 (0.06) 0.05 

AUT  0.56 (0.02)a 0.27  0.17 (0.05) 0.08 

BEL  0.46 (0.02)a 0.18  0.22 (0.05) 0.07 

CHL  0.44 (0.03)a 0.22  0.23 (0.06) 0.10 

SWE  0.58 (0.03)a 0.24  0.31 (0.06) 0.09 

DNK  0.56 (0.04)a 0.26  0.11 (0.08) 0.04 

ESP  0.49 (0.03)a 0.23  0.19 (0.06) 0.08 

POL  0.56 (0.03)a 0.26  0.43 (0.06) 0.17 

HKG  0.56 (0.04)a 0.22  0.18 (0.08) 0.06 

HUN  0.63 (0.03)a 0.30  0.40 (0.06) 0.16 

IRL  0.45 (0.03)a 0.19  0.18 (0.07) 0.06 

ISL  0.47 (0.04)a 0.18  0.03 (0.09) 0.01 

JPN  0.49 (0.04)a 0.16  0.27 (0.09) 0.07 

KOR  0.37 (0.04)a 0.09  0.02 (0.08) 0.00 

MAC  0.40 (0.02)a 0.17  0.00 (0.05) 0.00 

NOR  0.60 (0.03)a 0.26  0.11 (0.06) 0.04 

NZL  0.49 (0.03)a 0.16  0.09 (0.07) 0.03 

Note. Effect sizes for insignificant effects are printed in italics. 
a p < .05 (one-tailed tests). b Effect size estimate: Predicted difference in the probability of correctly solving 
a task for a student low in the number of visits to task-relevant  pages (-1 SD) and a student high in the 
number of visits to task-relevant pages (+1 SD) for a task high in navigation demands. c Effect size 
estimate: Predicted difference in the probability of correctly solving a task for a student showing low in the 
number of visits to task-relevant  pages (-1 SD) and a student high in the number of visits to task-relevant 
pages (+1 SD) for a task low in navigation demands.



×



ONLINE READING ENGAGEMENT 46 
 

 

 



ONLINE READING ENGAGEMENT 47 
 

 



ONLINE READING ENGAGEMENT 48 
 

 

 


