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DIPF | Leibniz Institute for Research and Information in Education

Alexander Robitzsch

Leibniz Institute for Science and Mathematics Education (IPN)

Centre for International Student Assessment (ZIB)

Johannes Hartig

DIPF | Leibniz Institute for Research and Information in Education

Testing whether items fit the assumptions of an item response theory model is an

important step in evaluating a test. In the literature, numerous item fit statistics

exist, many of which show severe limitations. The current study investigates the

root mean squared deviation (RMSD) item fit statistic, which is used for eval-

uating item fit in various large-scale assessment studies. The three research

questions of this study are (1) whether the empirical RMSD is an unbiased

estimator of the population RMSD; (2) if this is not the case, whether this bias

can be corrected; and (3) whether the test statistic provides an adequate sig-

nificance test to detect misfitting items. Using simulation studies, it was found

that the empirical RMSD is not an unbiased estimator of the population RMSD,

and nonparametric bootstrapping falls short of entirely eliminating this bias.

Using parametric bootstrapping, however, the RMSD can be used as a test

statistic that outperforms the other approaches—infit and outfit, S � X2—with

respect to both Type I error rate and power. The empirical application showed

that parametric bootstrapping of the RMSD results in rather conservative item

fit decisions, which suggests more lenient cut-off criteria.

Keywords: item fit; item response theory; educational measurement; bootstrap

Applying item response theory (IRT) models to test data in order to draw infer-

ences from the test requires testing whether the model actually fits (American

Educational Research Association, American Psychological Association, &

National Council for Measurement in Education, 2014). Testing model fit involves

several steps, including the calculation of globalmodel fit and local item fit statistics

(Hambleton & Han, 2005). Only when the model fits the data can the estimated

model parameters be reliably interpreted (Wainer & Thissen, 1987).

Journal of Educational and Behavioral Statistics

2020, Vol. 45, No. 3, pp. 251–273

DOI: 10.3102/1076998619890566

Article reuse guidelines: sagepub.com/journals-permissions

© 2019 AERA. http://jebs.aera.net

251

https://doi.org/10.3102/1076998619890566
https://sagepub.com/journals-permissions
http://crossmark.crossref.org/dialog/?doi=10.3102%2F1076998619890566&domain=pdf&date_stamp=2019-12-19


Various item fit statistics have been proposed in the literature. The common

methods for evaluating item fit can be grouped into two types of general

approaches: the chi-square approach and the likelihood-ratio approach (Ames

& Penfield, 2015). The former includes, for example, Bock’s w2 (1972), Yen’sQ1

(1981), Orlando and Thissen’s S � X2 (2000), and Wright and Masters’s (1982)

infit and outfit.1 The latter involves, for example, McKinley and Mills’s G2

(1985) and Orlando and Thissen’s S – G2 (2000). All approaches are based on

the computation of residuals between the observed and expected number of

correct responses, and it is assumed that, under the null hypothesis, the standar-

dized squared residuals follow a w2 distribution. However, there exists no theo-

retical basis regarding the distribution of the residuals under the null hypothesis

of perfect model fit and hence no statistic for testing the null hypothesis. For most

statistics, studies found inflated Type I error rates, especially for large sample

sizes, as well as a lack of power to detect itemmisfit (Chon, Lee, & Ansley, 2013;

DeMars, 2005; Glas & Suárez Falcón, 2003; Liang, Wells, & Hambleton, 2014;

Orlando & Thissen, 2000; Stone & Zhang, 2003). Note that the statistics men-

tioned so far and the statistics investigated in the remaining article focus on

detecting misfit with regard to the functional form assumed by the parametric

model. Other possible violations against model assumptions are multidimension-

ality and local stochastic dependence, which can be tested by statistics specifi-

cally designed for this type of model violation (see, e.g., Maydeu-Olivares & Joe,

2005; Reiser, 2008).

The Population Root Mean Squared Deviation (RMSD) Fit Statistic

Another residual-based fit statistic that so far has hardly been investigated is

the RMSD, which is implemented in the software mdltm (von Davier, 2005).

Starting with the 2015 wave, mdltm is used for scaling the Program for Interna-

tional Student Assessment (PISA; Organization for Economic Cooperation and

Development [OECD], 2016). It has also been used in the Program for the

International Assessment of Adult Competencies (PIAAC; Yamamoto, Khor-

ramdel, & von Davier, 2016). The RMSD serves as the criterion for determining

both item fit and differential item functioning and is thus of major relevance

regarding decisions of model fit with respect to the PISA data. In PISA, the cutoff

criterion to identify misfitting items in the cognitive assessment is RMSD > 0.12

(OECD, 2017); in PIAAC, it is RMSD > 0.15.

In the following, it is assumed that item responses Xi, with i ¼ 1; : : : ; I ,
follow a unidimensional item response model with item response functions

(IRFs) Pi yð Þ ¼ P Xi ¼ 1 jyð Þ and a standard normally distributed latent ability

y. Under local stochastic independence,

P X ¼ xð Þ ¼ PðX1 ¼ x1; . . . ;XI ¼ xI Þ ¼
ðYI

i¼1

Pi yð Þxi 1� Pi yð Þð Þ1�xi
� �

w yð Þdy; ð1Þ
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where wðyÞ denotes the density function of the standard normal distribution.

In most applications, parametrically modeled IRFs P�
i y;�ið Þ are imposed

(e.g., one-parameter logistic [1PL] or two-parameter logistic [2PL] IRFs;

Embretson & Reise, 2000) to estimate a unidimensional item response model

where a vector of item parameters �i is estimated for all items i ¼ 1; : : : ; I . This
parametric item response model will be typically misspecified to at least some

extent. As a consequence, the true IRF Pi yð Þ deviates from the estimated IRF

P�
i y;�ið Þ even in case of infinitely large samples. The IRFs P�

i y;�ið Þ can be

interpreted as quasi maximum likelihood estimates of the parametric item

response model (White, 1982). The discrepancy between the two IRFs is quan-

tified in the population RMSD statistic for item i:

RMSDi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið

Pi yð Þ � P�
i y;�ið Þ

� �2
w yð Þdy

s
: ð2Þ

Note that in this definition of the population RMSD, the two IRFs Pi yð Þ and

P�
i y;�ið Þ are unknown. Integration of the latent variable y is accomplished by

numerical integration based on a finite grid of y values with quadrature nodes yt.
The discrete version of the RMSD for an item i is thus defined as

RMSDi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
t

Pi ytð Þ � P�
i yt;�ið Þ

� �2
wt

r
: ð3Þ

The weights wt correspond to normalized values of the normal density at the

quadrature point yt. They serve as a discrete prior distribution in order to calcu-

late the area between the two IRFs as the sum of the differences between the

observed and expected probability of success at each quadrature node. The two

IRFs Pi ytð Þ and P�
i yt;�ið Þ need to be substituted by estimated functions based on

the observed data, which are described in the next section.

The Estimated RMSD Fit Statistic

Basically, the RMSD measures the distance between a true and a fitted IRF.

However, the true IRF Pi ytð Þ and the parametrically modelled IRF P�
i yt;�ið Þ

need to be estimated—denoted as P̂i ytð Þ and P̂
�
i yt;�ið Þ—at nodes yt. For com-

puting the RMSD, estimated nonparametric IRFs P̂i ytð Þ are based on individual

posterior probabilities h�p ytð Þ ¼ P ytjxp
� �

at the prespecified nodes, where p

indexes the persons. These posterior distributions make use of the fitted para-

metric item response model and, up to a constant, can be calculated as

h�p ytð Þ ¼ P ytjxp1;; : : : ; xpI
� �

/
YI
i¼1

P̂
�
i yt;�ið Þ xpi 1� P̂

�
i yt;�ið Þ

� �1�xpi
	 


: ð4Þ

The true IRF at a particular node yt (see also Sueiro & Abad, 2011) is

estimated by
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P̂i ytð Þ ¼

X
p
xpih

�
p ytjxp
� �X

p
h�p ytjxp
� � : ð5Þ

Based on these estimated IRFs, the RMSD statistic is calculated as

dRMSDi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
t

P̂i ytð Þ � P̂
�
i yt;�ið Þ

h i2
wt

s
: ð6Þ

Note that the definition of the population RMSDmirrors the definition of the root

integrated squared error (RISE; see Douglas & Cohen, 2001). Computation of the

RMSD statistic relies on posterior probabilities resulting from marginal maxi-

mum likelihood estimation, while the RISE statistic compares fully nonparame-

trically estimated IRFs with parametrically estimated IRFs.

Research Motivation and Research Questions

Statistical inference for the RMSD statistic has thus far not been investigated

in detail. The RMSD values are difficult to interpret since no generally accepted

cutoff value for misfit exists. The distribution of the empirical RMSD under

exact model fit is unknown, and it is not yet investigated whether this distribution

is affected by sample size, number of items, or the presence of misfitting items in

the data. Furthermore, analogue to the goodness-of-fit statistic standardized root

mean squared residual that is used to evaluate the fit of structural equation

models (see Maydeu-Olivares, 2017), the RMSD statistic suffers from finite

sample bias. We give a brief heuristic explanation as to why the expected sample

RMSD differs from the population RMSD statistic: The sample RMSD is based

on squared terms (see Equation 6). It holds that

P̂i ytð Þ � P̂
�
i ytð Þ ¼ ½P̂i ytð Þ � Pi ytð Þ�|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

B1

þ ½Pi ytð Þ � P�
i ytð Þ�|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

B2

þ ½P�
i ytð Þ � P̂

�
i ytð Þ�|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

B3

; ð7Þ

where only B2 contains a term that also appears in the population RMSD. In small

samples, there will be essential sampling variability of the fitted parametric IRFs

in the third term B3 and in the first term B1. Squaring these terms will result in

additional sampling variability of the sample RMSD statistic. Thus, the expected

value of the estimated statistic will exceed the corresponding population statistic.

The presents study investigates three research questions:

Research Question 1: How is the empirical RMSD affected by various character-

istics of the data?

Research Question 2: Can the finite sample bias be corrected using nonparametric

bootstrapping?

Research Question 3: Can the RMSD serve as a reliable test statistic to correctly

identify item misfit by applying parametric bootstrapping methods?

Bias Correction of RMSD Item Fit Statistic
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Research Question 3 also entails a comparison to other, more common fit

statistics.

The first simulation study (Study 1) revolves around Research Question 1

and investigates whether the empirical RMSD is sensitive to varying data

conditions such as sample size, item size, and number of misfitting items in

the data. In the second simulation study (Study 2), we use bootstrapping pro-

cedures to answer Research Questions 2 and 3. In general, bootstrapping meth-

ods can provide consistent estimators of the distribution of a statistic (Efron,

1979). They can further be used to obtain asymptotic refinements in order to

reduce finite sample bias (Habing, 2001). Regarding Research Question 2, the

nonparametric bootstrapping method is used to construct a bias-corrected

RMSD (RMSDnp.bs). To answer Research Question 3, we apply the parametric

bootstrap to construct the sampling distribution of the RMSD under the null

hypothesis, thus obtaining critical values for evaluating item fit (RMSDp.bs).

In Study 2, we also compare the performances of the infit and outfit statistics,

S� X2, and RMSD using critical values obtained from the parametric bootstrap

regarding their Type I error rates and power. Note that, thus far, the RISE

approach is not implemented in any available software or R package, which

is why it was not included in this study.

Study 1

Method

Simulation design. Study 1 was designed to investigate the characteristics of the

empirical RMSD under different data conditions when the population RMSD is

known. We varied the sample size (500; 5,000; 100,000), the number of items

(50; 200; 500), and the number of misfitting items in the data set (1; 10; 20),

resulting in 27 conditions (3 sample sizes � 3 item sizes � 3 number of misfits).

The number of replications r varied with sample size so that for N ¼ 500, r ¼
500; for N¼ 5,000, r¼ 350; and for N¼ 100,000, r¼ 20. Furthermore, the study

was conducted separately for two types of misfit: items with a guessing para-

meter and items with a nonmonotone IRF. Data generation and analyses were

conducted in the open-source software R (R Core Team, 2018).

Data generation. The fitting items were generated under the 2PL model (Birn-

baum, 1968). The person ability parameters yp were drawn from a standard

normal distribution y* N 0; 1ð Þ. The slope parameters ai were randomly drawn

from a log-normal distribution with ai * LN 0; 0:5ð Þ; the difficulty parameters bi
were randomly drawn from a standard normal distribution bi* N 0; 1ð Þ. To avoid
extreme item parameters that might result in simulated data in which either no

persons or all persons answered the item correctly, we excluded outliers and

redrew ai and bi until the parameters lay within two standard deviations from

the mean of the distributions from which they were drawn.
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Two types of misfitting items were generated and investigated separately. The

first type of misfitting item was generated under the three-parameter logistic

(3PL) model (Birnbaum, 1968), which is given by

P Xpi ¼ 1jyp
� �

¼ ci þ 1� cið Þ
exp ai yp � bi

� �� �
1þ exp ai yp � bi

� �� � ; ð8Þ

where Xpi corresponds to the observed item responses, and ci is the guessing

parameter and the lower asymptote of the IRF. This type of IRF likely occurs in

tests with multiple-choice items, where all response options seem equally plau-

sible to examinees with low y values. If all examinees at the lower end of the y
continuum simply took a guess at the correct response, the probability of success

on that item would not fall under the guessing asymptote.

The second type of misfitting item had a nonmonotonic IRF (see Wainer &

Thissen, 1987) and can be described as

P Xpi ¼ 1jyp
� �

¼ ci

1þ exp ai yp � bi þ dið Þ
� �� �þ 1

1þ exp �ai yp � bi
� �� � ; ð9Þ

where di is a positive number creating a dip in the IRF. This means that the

probability of a correct response decreases at some point on the theta continuum.

A likely scenario for this occurrence is an item where the distractors work

especially well for examinees at medium theta levels, thus reducing the chance

of success for this ability group. Other possibilities concern misconceptions of

certain content matter that are only prevalent in respective ability groups.

In order to choose the values of ai; bi; ci; and di parameters for simulating the

misfitting items, we conducted an additional preliminary simulation study.

Since the size of misfit depends on the combination of the item parameters,

we needed to identify which parameter constellations result in small, medium,

and large item misfit. The item parameters we investigated in the preliminary

simulation were: ai 0:2; 5½ � at equally spaced intervals of .05; bi½�3; 3� at
equally spaced intervals of .05; and ci 0:1; 0:5½ � at equally spaced intervals

of .1. For generating nonmonotone IRFs, di 1; 3½ � at equally spaced intervals

of .2 was used. These values were chosen in accordance with previous studies

(Orlando & Thissen, 2003; Sueiro & Abad, 2011). For each of the possible

parameter combinations, we compared the IRF of the generating model with the

IRF approximated by the 2PL model using the true y values. We then calculated

the difference between the two curves—that is, the discrete RMSD (see Equa-

tion 3). Generating misfit under the 3PL model resulted in an RMSD range

from approximately 0 to .137 and a mean of .038. When generating the non-

monotone items, the RMSDpop range was from approximately 0 to .266, with a

mean of .047. We therefore decided on the following definitions of the size

of misfit: RMSDi < :02 negligible misfit, :02 � RMSDi < :05 small mis-

fit, :05 � RMSDi < :08 medium misfit, and RMSDi � :08 large misfit.

Bias Correction of RMSD Item Fit Statistic
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To generate the misfitting items in Study 1, we randomly drew item para-

meter combinations that produced a medium misfit of about .05 in each repli-

cation. Thus, the parameter combinations differed across replications and

across items.

Computation of empirical RMSD. After generating the data sets, we used the 2PL

model implemented in the TAM package (Robitzsch, Kiefer, & Wu, 2017) to

analyze the data and to estimate the empirical RMSD. We investigated how the

RMSD performs under the 2PL model, since the major studies PISA and PIAAC,

which both investigate item fit using the RMSD, scale the data under the 2PL

model. The model estimation used 31 quadrature nodes from �5 to 5 for con-

ducting the numerical integration, six M-steps for item parameter estimation, and

a convergence criterion of .001 maximum change in the deviance value. In a

subsequent step, the RMSD values for all fitting and all misfitting items were

averaged, respectively, across all replications.

Results

Figure 1A and 1B show the empirical mean RMSD values for the fitting items

in the 3PL condition and the nonmonotone condition, respectively. One of the

main interesting findings is that the empirical RMSD of the fitting items only

closely approximates the population RMSD of 0 in the condition with 1 misfit-

ting item and a large sample size. This means that the RMSD of fitting items is

overestimated for all N < 100,000. Besides this, the three main results worth

noting are, firstly, that the empirical RMSD depends on sample size. As the

sample size increases, the RMSD decreases, which is due to the reduction of the

finite sample bias. Secondly, the empirical RMSD also depends on the total

number of items in the data set. More items in a data set lead to higher RMSD

values, which mirrors the findings of Sueiro and Abad (2011). This effect

decreases as sample size increases. An important factor in the estimation of the

RMSD is the ratio between the number of items and sample size. The least

favorable ratio of number of persons to number of items was 500:500, which

produced the highest RMSD values. Finally, the empirical RMSD hardly

depends on the number of misfitting items in the data set.2

Figure 2 illustrates that the empirical RMSD of the misfitting items only

closely approximates the population RMSD of 0.05 in the conditions with many

items (I ¼ 500) and a medium sample size (N ¼ 5,000). In all other conditions,

the empirical RMSD either over- or underestimates the population RMSD. For

the misfitting items, the first and second main results mirror the main results we

found for the fitting items, namely, that the empirical RMSD depends on sample

size and that the empirical RMSD depends on the total number of items in the

data set. Regarding the third main result, the empirical RMSD of the misfitting

items depends to some extent on the number of misfitting items in the data set.
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When there was only one misfitting item in the data set, the RMSD performed

especially badly in detecting this item when it was generated under a 3PL model

in the condition with I ¼ 50 and N ¼ 500 and when the item had a nonmonotone

IRF in the conditions with I¼ 50 and N¼ 500, with I¼ 50 and N¼ 100,000, and

with I ¼ 200 and N ¼ 100,000.

Overall, the results demonstrate that the empirical RMSD is not an unbiased

estimator of the population RMSD but largely depends on characteristics of the

data set. The two main influences are sample size and the number of items in

the data.

FIGURE 1. Mean root mean squared deviation (RMSD) for fitting items when (A) gen-

erating misfit under the three-parameter logistic and (B) generating nonmonotone items.

The horizontal line marks the population RMSD of the fitting items.
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Constructing Sampling Distribution for RMSD

Nonparametric Bootstrap

The nonparametric bootstrap can be used to construct the sampling distribu-

tion of a statistic in the underlying population of the given sample (Efron, 1979).

The idea is that the empirical data represent a random sample drawn from the

population distribution and that this unknown population distribution can be

estimated via the empirical data. Therefore, the empirical data are treated as a

FIGURE 2. Mean root mean squared deviation (RMSD) for misfitting items when (A)

generating misfit under the three-parameter logistic and (B) generating nonmonotone

items. The horizontal line marks the population RMSD of the misfitting items.
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population from which samples are drawn. The general procedure for the non-

parametric bootstrap involves three steps (see, e.g., Habing, 2001):

(1) Fit a parametric item response model to the observed data and estimate the

sample statistic of interest, T,

(2) use Monte Carlo simulation to generate R data sets by drawing samples of size N

with replacement from the empirical data set, and

(3) calculate the statistic of interest, T*, for each of the samples in Step 2.

The bias in T equals the expected difference between T and Y, where Y
represents the population parameter. Using the bootstrap, we can approximate

this expectation so that B� � E�ðT� � TÞ, where E�T� is the estimated expected

value of T�—that is, the average of the calculated T� for each of the bootstrap

samples. The bias-corrected estimator of T is given by T � B�, with standard

error E�½ðT � � TÞ2�1=2. In this way, the bootstrap improves first-order asymptotic

approximations and serves as a tool to reduce an estimator’s finite sample bias

(Horowitz, 2001). Su, Scheu, and Wang (2007), for example, proposed applying

this method to construct confidence intervals around the unstandardized infit and

outfit statistics. Raykov (2005) applied a bias-correction nonparametric bootstrap

estimator to measures of global misfit in structural equation modeling.

Using the nonparametric bootstrap, we

(1) calculated dRMSD from the parametric scaling model for each item i,

(2) drew random answering patterns with replacement of size n from the empirical

data set, resulting in R ¼ 200 data sets, and

(3) calculated RMSD�
b for each R.

The RMSDnp.bs was estimated as

RMSDnp:bs ¼ dRMSD � ðE�RMSD� � dRMSDÞ ¼ 2 dRMSD � E�RMSD�: ð10Þ

The term within parentheses in Equation 10 represents the bias B* of the uncor-

rected RMSD estimator. Subtracting the bias from the uncorrected estimator

leads to the bias-corrected estimator RMSDnp.bs.

Parametric Bootstrap

The parametric bootstrap provides the sampling distribution of a statistic

under the null hypothesis and thus allows testing of whether the empirically

derived value exceeds, for example, 95% of the values generated under the null

hypothesis. Steps 1 and 3 were identical to the nonparametric bootstrap. Step 2 of

the parametric bootstrap was as follows:

Bias Correction of RMSD Item Fit Statistic
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(2) Given the estimated parameters of the IRT model in Step 1, use Monte Carlo

simulation to generate a large number of R data sets.

The distribution of the obtained T* is the bootstrap distribution. Since the R

data sets were constructed under the assumption of a fitting model, the distribu-

tion of T* is the distribution of the statistic under the null hypothesis. This

distribution can be used to calculate critical values by taking, for example, the

2.5th and 97.5th percentile. Stone (2000) applied parametric bootstrapping to

obtain a null chi-squared distribution for testing item fit. Using a similar

approach, Habing (2001) constructed significance tests for a local dependence

assessment based on residual covariances of item pairs. Studies investigating

different variations of the RISE statistic also employed parametric bootstrapping

methods to perform hypothesis tests (Douglas & Cohen, 2001; Lee, Wollack, &

Douglas, 2009; Sueiro & Abad, 2011; Wells & Bolt, 2008).

In our study, the specific procedure for obtaining the sampling distribution of

the RMSD under the null hypothesis was as follows:

(1) We calculated dRMSD under the 2PL model.

(2) Using the same parametric model, the estimated item difficulty, and item dis-

crimination parameters, b̂i and âi, and randomly drawn person parameters y of

size N from a normal distribution y*Nð0; ŝ2Þ, we simulated R ¼ 200 data sets.

(3) We calculated RMSD�
b for each simulated data set R. Collectively, the RMSD�

b

values thus obtained approximate the sampling distribution of the dRMSD under

the null hypothesis.

As the RMSD can only take positive values, we took the 95th percentile of this

distribution to obtain the critical value for a one-sided test with a significance

level of a ¼ .05.

Study 2

The second simulation study investigated the bias correction using the

nonparametric bootstrap (RMSDnp.bs) and compared the performance of

Orlando and Thissen’s (2000) S � X2, the infit and outfit proposed by Wu

(1997), and the RMSD (von Davier, 2005), using parametric bootstrapping as

a test statistic by conducting critical values around the RMSD (RMSDp.bs).

Note that the infit and outfit are typically applied in the context of the Rasch

model (Rasch, 1960), since in the Rasch model persons’ sum scores are

sufficient statistics for the trait level (Ames & Penfield, 2015; Swaminathan,

Hambleton, & Rogers, 2007; Wu & Adams, 2013). However, they can and

have been applied to 2PL models as well, and our aim was to investigate

their performance under the 2PL model.
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Method

Simulation design. The test length was fixed to 50 items. The following factors

were manipulated: sample size (500; 1,000; 5,000), number of misfitting items

(0; 5; 15), and size of misfit (small; medium; large). As the condition with 0

misfit does not cross with size of misfit, the number of conditions was 21 (3

sample sizes � 2 conditions with different numbers of misfits � 3 sizes of misfit

þ 3 sample sizes � 1 condition with no misfit). One thousand replications were

conducted in each condition. As for Study 1, the simulation was conducted twice,

using two types of misfit (guessing parameter and nonmonotone IRF).

Data generation. The parameters for the fitting items were analogous to those in

Study 1. As in Study 1, the misfitting items were generated under the 3PL model

(Birnbaum, 1968) and the model producing nonmonotonic IRFs (see Equation 9).

To vary the size of misfit in Study 2, we randomly drew 15 item parameter

combinations of ai; bi; ci; and di that, according to our preliminary study,

resulted in small, medium, and large RMSD values, respectively (see Tables

A1 and A2 of the Appendix in the online version of the article). In the condition

with only 5 misfitting items, only the first five item parameter combinations were

used to generate the item responses of the misfitting items. Note that compared to

Study 1, we kept the item parameter combinations fixed across the 1,000 replica-

tions. In this way, we were able to separate variance that might be due to different

item parameter combinations from variance across the replications.

Computation of item fit. Four statistics were estimated and evaluated: the cor-

rection of the RMSD using nonparametric bootstrapping (RMSDnp.bs), the

weighted (infit) and unweighted (outfit) mean squares (MNSQ) fit statistics as

defined byWu (1997), Orlando and Thissen’s S� X2 (2000), and the RMSD (von

Davier, 2005) using the parametric bootstrap to obtain critical values

(RMSDp.bs). All indices were estimated in the open-source software R (R Core

Team, 2018). Infit and outfit, S � X2, and the RMSD are implemented in the

TAM package (Robitzsch et al., 2017); critical values using the parametric boot-

strap and bias corrections of the RMSD were implemented in R by the authors.

As in Study 1, we used a 2PL model with 31 quadrature nodes from �5 to 5 to

conduct the numerical integration, six M-steps for item parameter estimation,

and a convergence criterion of .001 maximum change in the deviance value.

Type I error rates. To examine Type I error rates of infit and outfit, S � X2, and

RMSD, the proportion of fitting items that were identified as misfitting at a

significance level of a ¼ .05 was calculated in each condition. For the weighted

and unweighted MNSQ, we used the typically employed cutoff criterion of 1.15

to determine whether an item showed misfit (see, e.g., OECD, 2012, 2015; Pohl

& Carstensen, 2012). We also calculated the Type I error rates of the transformed

infit/outfit t values. For the S � X2 statistic, the empirical p values of the w2 test
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were used. The critical values obtained from the parametric bootstrapping pro-

cedures were employed to evaluate the statistical significance of the RMSD,

denoted as RMSDp.bs.

Power. The power to detect item misfit was estimated by calculating the pro-

portion of correctly detected misfitting items across the replications in each of the

conditions containing misfitting items. The same cutoff criterion and signifi-

cance levels as for estimating Type I error rates were used.

Results

Bias reduction using nonparametric bootstrap. As is evident from Tables 1 and

2, the nonparametric bootstrap correction RMSDnp.bs was smaller than the

RMSD in each condition, indicating that the reduction of the finite sample bias

was successful. However, the RMSDnp.bs values of the fitting items still signif-

icantly exceeded 0, thus overestimating the population RMSD. As in Study 1, the

empirical RMSD depended on sample size; also, the empirical RMSD of the

misfitting items was either under- or overestimated in most conditions. The bias

reduction using nonparametric bootstrapping is thus not efficient in recovering

the population RMSD in order to use it as a form of an effect size. The nonpara-

metric bootstrap procedure should also not be used to determine exact infer-

ence—that is, to evaluate whether or not an item shows misfit.

Type-I error rates in fit condition. Regarding the different performances of the

fit statistics for exact inference, Table 3 shows that Type I error rates for

infit/outfit were deflated, meaning that hardly any items were (incorrectly)

identified as misfitting. The S � X2 statistic and the RMSD using the critical

values from the parametric bootstrapping method (RMSDp.bs) showed accep-

table Type I error rates. Note that, overall, the results were independent of

sample size.

Type-I error rates in misfit condition. In the conditions where misfitting items

were included in the data set, results regarding Type I error rates were similar to

the results in the fit condition (see Table 4; results for the conditions with items

TABLE 1.

Mean RMSD and RMSDnp.bs of the Fitting Items in the Conditions With Only Fitting Items

N RMSD RMSDnp.bs

500 .038 .023

1,000 .027 .016

5,000 .012 .007

Note. RMSD ¼ root mean squared deviation; np.bs ¼ nonparametric bootstrap.
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generated using a nonmonotone function are displayed in Table A3 of the

Online Appendix). Infit/outfit showed deflated Type I error rates in all condi-

tions. The S � X2 statistic displayed acceptable Type I error rates except in the

conditions with 30% misfit and medium/large sizes of misfit. The RMSDp.bs

method performed similarly to the S � X2 statistic and also showed acceptable

results. It increased as sample size and the number of misfitting items

TABLE 2.

Mean RMSD and RMSDnp.bs of the Fitting and Misfitting Items, Respectively, in the

Conditions With Misfitting Items

% Misfit Size N

Fitting Items Misfitting Items

RMSD RMSDnp.bs RMSD RMSDnp.bs

10 Small 500 .027 .016 .057 .053

1,000 .019 .012 .055 .052

5,000 .009 .006 .053 .052

Medium 500 .028 .016 .039 .032

1,000 .019 .012 .035 .032

5,000 .009 .005 .032 .031

Large 500 .028 .016 .027 .018

1,000 .020 .012 .021 .015

5,000 .009 .005 .014 .012

30 Small 500 .028 .017 .052 .048

1,000 .020 .012 .050 .048

5,000 .011 .008 .048 .048

Medium 500 .028 .016 .036 .030

1,000 .020 .012 .033 .029

5,000 .009 .006 .030 .029

Large 500 .028 .016 .028 .018

1,000 .019 .011 .021 .015

5,000 .009 .005 .014 .012

Note. RMSD ¼ root mean squared deviation; np.bs¼ nonparametric bootstrap.

TABLE 3.

Type I Error Rates in Fitting Item Condition

N Infit Infit_t Outfit Outfit_t S � X2 RMSDp.bs

500 0 0 .019 .001 .073 .061

1,000 0 0 .010 .001 .079 .065

5,000 0 0 .001 .001 .076 .063

Note. t ¼ t value of the infit/outfit statistics, respectively; RMSD ¼ root mean squared deviation;

p.bs ¼ parametric bootstrap.
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increased. It was thus slightly too high in the conditions with 30% misfit and

large sample sizes.

Power. As is evident from Table 5, the infit and its respective t value hardly

detected item misfit (results for the conditions with items generated using a

nonmonotone function are displayed in Table A4 of the Online Appendix). The

outfit detection rates lay between 20% and 37% (23% and 54% regarding outfit

t values) for items generated under the 3PL model and between 3% and 33%
(9% and 53% regarding outfit t values) for items generated under a nonmono-

tone function. These results were still unsatisfactory. The S � X2 statistic had

high power rates in conditions with large sample sizes and large sizes of misfit.

The power to detect misfitting items in data sets with sample sizes of N ¼ 500

and N ¼ 1,000 was low to moderate. The RMSDp.bs method performed well in

detecting misfitting items in all conditions with large sizes of misfit and in all

conditions with a large sample size. The power of the RMSDp.bs to detect misfit

was lowest in the condition with 15 misfitting items, small sizes of misfit, and

N ¼ 500. For the most part, an increase in the number of misfitting items had a

slightly negative effect on their power to detect misfit.

TABLE 4.

Type I Error Rates in Misfitting Item Condition (Misfit Generated Using the 3PL Model)

% Misfit Size N Infit Infit_t Outfit Outfit_t S � X2 RMSDp.bs

10 Small 500 .000 .000 .023 .028 .073 .085

1,000 .000 .000 .012 .033 .079 .087

5,000 .000 .000 .002 .043 .078 .088

Medium 500 .000 .000 .021 .027 .075 .068

1,000 .000 .000 .011 .031 .079 .070

5,000 .000 .000 .001 .042 .084 .077

Large 500 .000 .000 .022 .028 .079 .063

1,000 .000 .000 .010 .033 .087 .070

5,000 .000 .000 .001 .049 .092 .091

30 Small 500 .000 .000 .020 .027 .074 .095

1,000 .000 .000 .010 .032 .076 .101

5,000 .000 .000 .001 .043 .072 .109

Medium 500 .000 .000 .020 .027 .087 .088

1,000 .000 .000 .010 .033 .103 .097

5,000 .000 .000 .001 .047 .182 .144

Large 500 .000 .000 .026 .038 .127 .076

1,000 .000 .000 .014 .045 .160 .096

5,000 .000 .000 .002 .086 .385 .236

Note. t ¼ t value of the infit/outfit statistics, respectively; RMSD ¼ root mean squared deviation;

p.bs ¼ parametric bootstrap.
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Empirical Example

We applied the item fit statistics to real PISA 2009 data to demonstrate the

differences between the fit statistics in detecting misfit and to test applicability of

the parametric bootstrap for the RMSD (RMSDp.bs). Please note that the S � X2

statistic is only defined for complete response data; since the PISA data contain

missing item responses due to a multiple matrix design, we were unable to apply

this statistic to the data. We used 88 items from reading literacy tests in Albania

and 93 items from the same test in the United States. We scaled the countries

separately under the 2PL model. Sample sizes were N ¼ 3,820 for Albania and

N ¼ 5,233 for the United States.

Results showed that neither the infit nor its critical t value was exceeded for

any of the items. The outfit indicated misfit for 1 item in Albania and for 3 items

in the United States, all of which also had critical t values. The RMSD values in

the sample from Albania had a mean of 0.017 (SD¼ 0.009; range: 0.004–0.048);

in the sample from the United States, the mean was 0.019 (SD ¼ 0.011; range:

0.003–0.058). According to our classification into small, medium, and large bias,

23 items showed small misfit, and there was no medium or large misfit in the

Albanian sample; 27 items showed small misfit and 3 items showed medium

TABLE 5.

Power to Detect Misfitting Items (Misfit Generated Using the 3PL Model)

% Misfit Size N Infit Infit_t Outfit Outfit_t S � X2 RMSDp.bs

10 Small 500 .000 .000 .367 .351 0.073 0.468

1,000 .000 .000 .363 .362 0.098 0.513

5,000 .000 .135 .349 .389 0.230 0.770

Medium 500 .000 .000 .266 .262 0.245 0.563

1,000 .000 .000 .262 .305 0.368 0.812

5,000 .000 .000 .279 .442 0.934 1.000

Large 500 .000 .000 .220 .232 0.466 0.868

1,000 .000 .000 .214 .280 0.709 0.992

5,000 .000 .000 .201 .467 1.000 1.000

30 Small 500 .000 .000 .293 .248 0.075 0.381

1,000 .000 .000 .271 .277 0.088 0.427

5,000 .000 .020 .224 .354 0.166 0.733

Medium 500 .000 .000 .334 .340 0.134 0.532

1,000 .000 .000 .329 .384 0.204 0.728

5,000 .000 .000 .325 .465 0.666 0.999

Large 500 .000 .000 .255 .324 0.241 0.803

1,000 .000 .000 .249 .411 0.425 0.981

5,000 .000 .000 .255 .540 0.998 1.000

Note. t ¼ t value of the infit/outfit statistics, respectively; RMSD ¼ root mean squared deviation;

p.bs ¼ parametric bootstrap; 3PL ¼ three-parameter logistic.
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misfit in the U.S. sample. In terms of RMSDp.bs, a larger number of the items

were considered misfitting (38 in Albania and 55 in the United States). This

means that up to half of the items (in the United States, more than half) did not

conform to the 2PL model. An inspection of the expected and observed IRFs

showed that the RMSDp.bs penalized even the slightest deviation from the

expected 2PL function. Most expected IRFs only showed slight deviations, with

occasional dips but mostly monotonic curves. In the two samples, the fit statistics

identified different items as misfitting.

Overall, the empirical example shows that the purely statistical evaluation of

misfit using the parametric bootstrap can result in rather conservative item fit

decisions. Practitioners should decide on how much misfit they are willing to

accept and could use the 1st percentile of the parametric bootstrap distribution,

hence lowering the critical value of a ¼ .05 to a ¼ .01.

General Discussion

Detecting model aberrant items is an important step in the process of test

evaluation. Many of the common item fit statistics have been criticized for their

inadequate Type I error rates and their weak power to detect misfit. A more

recent fit statistic, the RMSD, is currently used for assessing PISA and PIAAC

data; thus far, it has hardly been investigated. In this article, we explored how the

empirical RMSD is influenced by various characteristics of the data set (Study 1).

Furthermore, nonparametric and parametric bootstrap procedures were applied to

the RMSD to correct for finite sample bias and to obtain accurate critical values.

In a second simulation study (Study 2), these approaches were compared to more

common approaches—the infit and outfit proposed by Wu (1997) and Orlando

and Thissen’s (2000) S � X2—according to their Type I error rates and power.

Results from Study 1 illustrate that the empirical RMSD is not an unbiased

estimator of the population RMSD, and bias depends on characteristics of the

data set. Study 2 showed that of the approaches considered for the RMSD, the

parametric bootstrap yielded the most desirable results, with only slightly

inflated Type I error rates and moderate to high power rates. Infit and outfit

MNSQ and t values produced deflated Type I error rates and low power rates.

The S � X2 statistic showed slightly inflated Type I error rates, especially for

large sample sizes, and acceptable power to detect item misfit for large

sample sizes.

The results from Study 1 show that the empirical RMSD in a sample deviates

from the population RMSD. The reason for this deviation lies in the estimation of

the posterior distribution. When the true IRF contains a guessing parameter but

the fitted model is a 2PL model, the true IRF will differ from the fitted parametric

IRF. Estimating a person’s posterior distribution based on the fitted parametric

model will result in an estimate that differs from the person’s individual posterior

distribution based on the truly nonparametric IRF. As a result, the empirical
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RMSD only approximates the population RMSD in conditions with a large

number of fitting items in the data set and a vast sample size (N ¼ 100,000 in

our example). A solution that avoids estimating the RMSD based on parametri-

cally fitted IRFs is to calculate the posterior distribution based on nonparametric

IRFs (Rossi, Wang, & Ramsay, 2002) as postulated in the RISE approach (see

Sueiro & Abad, 2011). The reason the RMSD depends on the number of items in

the data set—a result that was also found by Sueiro and Abad (2011)—needs to

be investigated in more detail.

The results from Study 2 align with and enhance prior research. The infit and

outfit statistics have been shown to depend on sample size (Wu, 1997; Wu &

Adams, 2013). The current findings demonstrate that the statistics also depend on

the size of misfit. Since infit and outfit were primarily developed for the Rasch

model, their poor performance in accurately detecting item misfit might not be

surprising. It is also obvious from the results that the cutoff criterion of 1.15,

which is frequently used to determine whether an item shows misfit, is too liberal

and should be adapted. Whether the formulas provided by Wu and Adams

(2013), which take sample size into account when calculating the infit and outfit

MNSQ, also hold for the 2PL model should be investigated in future studies.

Previous studies regarding the S � X2 statistic also showed acceptable Type I

error rates and low to moderate power to detect misfitting items (Orlando &

Thissen, 2000; Wells & Bolt, 2008). The good performance using the parametric

bootstrap approach for the RMSD is in line with studies that also applied this

approach (Douglas & Cohen, 2001; Habing, 2001; Lee et al., 2009; Stone, 2000;

Sueiro & Abad, 2011; Wells & Bolt, 2008). The nonparametric bootstrap-

corrected RMSD displayed high power rates but also highly inflated Type I error

rates. The inflated Type I error rates resulted from the fact that the nonparametric

bootstrap correction fails to completely eliminate the finite sample bias. The

expected RMSD values still significantly exceeded 0, thus producing too many

false rejections of the null hypothesis.

Overall, the authors propose using the parametric bootstrap to define critical

values for the RMSD. This procedure is easily implemented for simple study

designs and needs more elaborate Monte Carlo simulations for generating the

bootstrap samples as the complexity of the study design increases.

One limitation of the research presented is that the design of the second

simulation is rather simple and fails to map closely the more complex study

designs that are typically employed in large-scale assessments. PISA, for exam-

ple, uses a multimatrix sampling design in which examinees are presented with

only a subset of items (von Davier, Sinharay, Beaton, & Oranje, 2006). This

results in large numbers of nonadministered items, which, in turn, might have an

effect on the fit statistics.

Another possible enhancement of the research involves investigating more

types of item misfit. In this study, misfit was generated using the 3PL model and

a model for nonmonotone IRF. Other possible reasons for misfit are IRFs with
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plateaus and IRFs with upper asymptotes (see, e.g., Douglas & Cohen, 2001; Lee

et al., 2009; Sueiro & Abad, 2011). However, the results between the two types of

misfit we investigated were almost identical, which points to a generalizability of

our findings. It would also be interesting to investigate the performance of the fit

statistics with several types of item misfit within the same data set. So far, most

studies have examined the misfitting item types in separate simulation condi-

tions. However, in real data settings, a mix of fitting and different types of

misfitting items is more likely. The Type I error and power rates might change

in the presence of different types of misfitting item.

The performance of the RMSD using parametric bootstrap methods should be

further evaluated with respect to polytomous items. Also, application of the item

fit indices to more complex models such as multidimensional models constitutes

a relevant research area. Furthermore, normal trait distribution was assumed in

our simulation. This assumption might not hold in each empirical setting and

could have an effect on the fit statistics (see, e.g., Liang et al., 2014). How the fit

indices perform for other types of trait distribution needs future research.

Lastly, we would like to stress that the testing of model fit involves several

steps, the testing of statistical item fit being only one of them (Hambleton & Han,

2005). Fit evaluation is a multifaceted process that includes a thorough investi-

gation of why an item has been identified as misfitting. Test developers should

study these items carefully and consider whether the reasons for misfit necessi-

tate their removal. Recent studies also examine practical consequences of item

misfit when making decisions on item removal, thus taking the purpose of the test

and the implications from the assessment into account (Köhler & Hartig, 2017;

Liang et al., 2014; Sinharay & Haberman, 2014; van Rijn, Sinharay, Haberman,

& Johnson, 2016).
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Notes

1. Wu (1997) proposed an alternative calculation of the infit and outfit item fit

statistics within the multidimensional random coefficients multinomial logit

model by Adams, Wilson, and Wang (1997). Instead of defining the fit sta-

tistics based on individual person ability estimates (e.g., the weighted
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likelihood estimates; Warm, [1989]), the calculation of infit and outfit is

based on individual posterior ability distributions (Wu, 1997). This approach

is implemented in the software ConQuest (Wu, Adams, Wilson, & Haldane,

2007) and in the R package TAM (Robitzsch et al., 2017). Note that other

software packages (e.g., the R package MIRT; Chalmers, 2012) use individual

person ability estimates. The different approaches to calculating infit and

outfit often lead to substantially different estimates of the fit statistics for

small to moderate numbers of items.

2. Note that we conducted additional analyses to investigate the influence of the

number of misfitting items in the data set. Instead of keeping the number of

misfitting items in the data set fixed at 1, 10, and 20, we fixed the percentage

of misfitting items at 10% and 20% of the total number of items in the data set.

However, this hardly influenced the results, which is a further indication that

the number of misfitting items only plays a minor role.
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