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Abstract1

An important prerequisite of progress monitoring as one source to support in-
structional decision-making is the existence of equivalent booklets. This study as-
sesses this prerequisite with respect to a German elementary school math curric-
ulum-based measurement instrument (LVD-M 2-4; Strathmann & Klauer, 2012). 
Every second week of a 19-weeks period, n = 108 third and n = 109 fourth grad-
ers (regular instruction) completed one of ten parallel booklets, each containing 
24 arithmetic tasks. Analyses with (generalized) linear mixed models showed that 
in both grades the between-booklet variance was so small in relation to the be-
tween student variance that it was practically irrelevant. This corresponds to the 
key assumption of the binomial model that equivalent scores from different book-
lets reflect the same ability. While item difficulty varied within some of the tasks, 
the effect was insubstantial in comparison with the variance between students. 
These findings were replicated in two intervention samples of an RTI study. The 
parallel booklets can therefore be regarded as equivalent for typical applied pur-
poses. Implications of these findings for curriculum-based measurement and 
booklet design are discussed.

Keywords
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Verlaufsdiagnostik arithmetischer Grundkompetenzen: 
Messen verschiedene Booklets die gleiche Fähigkeit?

Zusammenfassung
Eine wichtige Voraussetzung dafür, Lernverlaufsdiagnostik für  instruktionale 
Entscheidungen nutzen zu können, sind äquivalente Testbooklets. Diese Studie 
prüft diese Voraussetzung für die „Lernverlaufsdiagnostik – Mathematik 2-4“ 
(LVD-M 2-4; Strathmann & Klauer, 2012). Über 19 Wochen hinweg bearbeiteten 
n = 108 Drittklässler:innen und n = 109 Viertklässler:innen in zweiwöchigem Ab-
stand zehn verschiedene Paralleltests mit je 24 arithmetischen Aufgaben. Mithilfe 
(generalisierter) gemischter linearer Modelle wurden Booklet-Effekte in Relation 
zur Leistungsvarianz zwischen den Kindern gesetzt. Damit wurde die Kernan-
nahme des Binomial-Modells geprüft, dass gleiche Scores aus verschiedenen zu-
fallsgenerierten Booklets die gleiche latente Fähigkeit abbilden sollten. In beiden 
Klassenstufen fiel die Between-Booklet-Varianz in Relation zur Varianz zwischen 
den Kindern sehr gering aus. Für einige Aufgabentypen variierte die Schwierig-
keit zwar zwischen den Booklets, war verglichen mit der Varianz der Schülerleis-
tung aber nicht substanziell. Die Befunde ließen sich in zwei Interventionsgruppen 
einer RTI-Studie replizieren. Die Booklets können also für typische Anwendungs-
zwecke als äquivalent angesehen werden. Die Implikationen dieser Befunde wer-
den vor dem Hintergrund von Lernverlaufsdiagnostik und der Konstruktion äqui-
valenter Testbooklets diskutiert.

Schlagworte
Lernverlaufsdiagnostik, Mathematik in der Grundschule, formatives Assessment, 
Booklet-Äquivalenz

1.  Theoretical Background

1.1  Standardized Diagnostics as a Contribution to Instructional 
Decision-Making

Instructional decision-making in schools is complex. Educational psychology can 
assist teachers by providing and evaluating instruments to systematically assess 
clear-cut competences of their students. While test construction in the domains 
of reading and writing faces a longer tradition, mathematical learning has main-
ly been targeted in the last two decades. In this period, a considerable number of 
tests have been published to help assess mathematical achievement in general, but 
also to identify children at risk for dyscalculia. Test backgrounds range from neu-
ropsychological or developmental models to curricular or even higher-order na-
tional and international standards (Köller & Reiss, 2013; Kuhn & Schwenk, 2018).
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Independent of the domain two main categories of standardized diagnostics can 
be distinguished: summative and formative approaches (Klauer, 2014), which differ 
in their purpose and measurement frequency. Summative tests (status diagnostics) 
evaluate a student’s performance at a given point in time and help to identify indi-
viduals beyond a clinically relevant threshold. Unless designed as a screening, most 
status diagnostics are time-consuming and not suitable for large groups in every-
day school practice. By contrast, formative testing, or progress monitoring, is based 
on multiple measurements that usually occur repeatedly (e.g., weekly). In contrast 
to summative testing, progress monitoring captures learning courses or trajecto-
ries (Deno, 2003). Progress monitoring is applicable to any competence on which 
subjects are expected to make visible progress in a reasonable period of time. It is 
described and recommended for mainly elementary school reading, spelling, and 
mathematics (especially basic arithmetic operations), but also for precursor abili-
ties like letter naming or number identification (Foegen et al., 2007; Hosp et al., 
2016).

1.2  Progress Monitoring in Special Needs Education and 
Beyond

Progress monitoring has gained particular importance in special needs education, 
for example, being a core feature of the response to intervention (RTI) paradigm, 
a preventive and inclusive educational concept with roots in the USA and trans-
fer to other countries (e.g., Germany: Huber & Grosche, 2012; Voß, 2016, or Fin-
land: Björn et al., 2018). In RTI, formative assessment helps to dynamically keep 
track of key learning criteria and thereby assign students to one of three tiers of 
educational support between regular classroom instruction (Level 1) and intensive 
single-subject fostering (Level 3). In frameworks like RTI, two things are impor-
tant to bear in mind regarding the informative value of progress-monitoring tests: 
First, aggregated progress-monitoring outcomes (e.g., number of correctly read 
words in 1 minute or number of correctly solved calculations in a set of 24 tasks) 
are not sufficiently fine-grained to unravel the educational needs of low-performing 
students. In this case, class-level progress monitoring can only serve as a screen-
ing tool, painting the “big picture”. Qualitative diagnostics like error analysis (e.g, 
Ashlock, 2005; Gerster, 2012) and/or the “thinking aloud” method (e.g., Lawson & 
Rice, 1987) are needed to find out where a specific student struggles. Second, pro-
gress monitoring is not restricted to this subgroup with special educational needs: 
It potentially informs data-based instruction of students in the whole ability range, 
even of very high achievers (Hebbecker & Souvignier, 2016). Therefore, research on 
the construction and analysis of progress-monitoring assessments is relevant for all 
types of schools and educational practice.
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1.3  Particularities of Progress-Monitoring Tests

Progress-monitoring tests must meet certain requirements which are subject of re-
search. To systematize research on curriculum-based measurement (CBM), Lynn 
Fuchs (2004) describes three stages. The first stage focuses on the psychomet-
ric properties (reliability, validity) of a progress-monitoring instrument and is not 
much different from the evaluation of status tests. However, the question of how 
to generate the required set of equivalent test booklets is not trivial. Several psy-
chometric challenges are specifically linked to progress diagnostics: For instance, 
the “difficulty” of a specific item as well as the difficulty of the entire test has to de-
crease over time if learning progress is made (Rohwer, 2015). Simply speaking, a 
student is expected to make fewer errors over time in case that items are very sim-
ilar. Moreover, test takers’ ability is likely to develop differently in between (with 
inter-individually different growth curves). Most importantly, as a matter of valid-
ity, an increasing test score across time should not be due to rote learning of spe-
cific, repeatedly administered items but due to an increasing mastery of the compe-
tence represented by them.

This leads to the methodologically crucial second research stage outlined by 
Fuchs (2004). Studies in this stage assess whether a given instrument is in fact 
able to measure the core construct learning progress (also called “sensitivity to 
change”; Klauer & Strathmann, 2013). In addition to performance variability across 
measurement points, the validity of the learning slope as a predictor of learning 
progress, or as a criterion for response to intervention, is investigated. Most of re-
spective studies are based on reading (Schatschneider et al., 2008; Stage & Jacob-
sen, 2001), only few on mathematical instruments, and they show heterogeneous 
results: Some studies report substantial correlations between learning progress 
and later achievement (Keller-Margulis et al., 2008), others do not find any or only 
negligible incremental validity for learning slopes (i.e., progress lines) beyond base-
line ability (e.g., Shapiro et al., 2015). This inconclusive pattern could be partially 
related to the lack of booklet equivalence: an important prerequisite for data-based 
decision-making, which is addressed in third-stage research according to Fuchs 
(2004).

1.4  Construction of Progress-Monitoring Instruments

To overcome psychometric dilemmas linked to progress monitoring, the framework 
of generic test construction (Rohwer, 2015) defines performance based on correct-
ly solved representations of task types (e.g., mental addition as a category of sim-
ilar problems), each consisting of a pool of structurally similar (and thus theoreti-
cally equivalent) items. Hence, a new test booklet generated by randomly sampling 
an item of each task type.



Curriculum-Based Measurement of Basic Arithmetic Competence

65JERO, Vol. 14, No. 1 (2022)

Because the idea that the same test needs to be repeated is more a theoretical 
(i.e., content validity of the tasks types) than a technical (i.e., psychometric) mat-
ter in the first place, it is important that task types represent a meaningful stan-
dard. In the context of regular schools and average student populations, the curric-
ulum is an obvious standard, as it defines the learning goals of each grade. In line 
with this, learning progress monitoring is predominantly thought of as CBM since 
emerging in the early 1970s (Deno, 1985; Klauer, 2014). Deducing appropriate task 
types from curricula is referred to as curriculum-sampling. Applying this approach 
to elementary school mathematics, the tasks included in CBM represent the set of, 
for example, arithmetic problem types that children of a specific grade should mas-
ter at the end of the school year. Mathematical CBMs known to the authors of this 
study mainly focus on arithmetic operations (addition, subtraction, multiplication, 
division), but there are also examples comprising other curricular mathematical 
domains like geometry (e.g., quop; Souvignier, 2018).

However, curriculum-sampling is just one possibility, next to concentrating on 
so-called robust indicators (Fuchs, 2004; Schwenk et al., 2017). Robust indicators 
are key competences that are empirically valid for the achievement development 
in a specific domain and might be more basic than the curricular goals for a given 
grade. The main advantage of this approach is its flexibility: Robust indicator tests 
are seamlessly applicable across grade boundaries. While passage reading fluen-
cy is a well-established robust indicator in reading, there is no equivalent in math-
ematics. Foegen (2007) explains this with the differences of curricula, with math, 
compared to reading, learning being more complex and better represented by cur-
riculum-sampling instead of robust indicators.

1.5  Booklet Equivalence

A key condition to interpret learning trajectories unambiguously is the assumption 
of equivalent test forms. Only when different test forms are equivalent can longi-
tudinal test scores be considered as valid measures of individual learning. Howev-
er, the degree to which different booklets of progress-monitoring instruments are 
equivalent or influenced by design features has only been addressed explicitly by 
few studies, mainly in the field of reading (CBM-R): Absolute estimates of week-
ly growth rates and intercepts as well as standard errors were shown to vary across 
different texts (“passages”) used for oral reading CBM (Ardoin & Christ, 2009; 
Francis et al., 2008). Therefore, absolute scores in CBM, that is, words read cor-
rectly per minute, should be interpreted with caution (Ardoin et al., 2013). By con-
trast, relative estimates of growth rates, that is rank orders of students, are more 
reliable.

Research in the field of mathematics (CBM-M) is comparably scarce (Montague 
et al., 2010). Like in CBM-R, Christ and Vining (2006) describe an “excessive re-
liance on research that has examined relative score interpretation” (p. 398). Strat-
ified instead of randomly ordered booklets, that is, a presentation of items struc-
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tured by the skill they assess (Christ & Vining, 2006), seem to enhance booklet 
equivalence.

How can cross-booklet equivalence be tested from a technical point of view? 
In the literature, the concept of equivalence has been investigated from varying 
perspectives, using at least three different yet related methodological approaches. 
First, in classical test theory, which operates at the level of test scores, two test 
forms are considered as parallel in the case that their mean test scores and test 
score variances are equal (e.g., McDonald, 1999). In the case of differing means 
and/or variances, equivalence can be established using test equating (e.g., Kolen & 
Brennan, 2014). In this approach, item parameters are of secondary importance. 
For example, Strathmann and Klauer (2010) compared means of adjacent math 
progress-monitoring test scores at each measurement point.

In contrast, item response theory (IRT) is a second approach that allows inves-
tigating test equivalence at the item level by analyzing differential item functioning 
(DIF). If no DIF exists between two test forms (i.e., if item parameters are identi-
cal), the test forms can be considered equivalent. Taking a less restrictive stance, 
equivalence of test forms within an IRT framework can also be assumed in the case 
that test information functions (TIF) are similar (Förster & Kuhn, 2021).

A third approach of analyzing test form equivalence relates to investigating the 
relative proportion of test score variance that can be attributed to test forms, in 
contrast to other factors (e.g., students, testing occasions). This is in the tradition 
of generalizability theory (e.g., Brennan, 2001). In this approach, the equivalence 
of test forms can be expressed in a relative way: The degree of equivalence is high 
if the variance attributable to test forms is very small, compared to the variance re-
lated to other factors. For example, Fan and Hansmann (2015) investigated a CBM 
of oral reading fluency, and found that 2.8% of total variance was attributable to 
probe variability, whereas 90.2% of variance was due to student reading skill. In 
the present study, we investigated test equivalence using this approach. In case 
the variance is solely attributable to student ability and unspecific error, but not to 
items/item families, there is neither DIF nor differential test functioning (DTF; i.e., 
when discussing Rasch models). In this sense, this is a strict approach, as the glob-
al absence of item (family) level variance implies equivalence in the IRT tradition 
and hence the classical test theory (CTT) tradition.

1.6  Summary: Aim of this Study

The key prerequisite of CBM instruments – a valid pool of different but psychomet-
rically equivalent booklets – is often theoretically taken for granted. This is coupled 
with the assumption that identically distributed test scores stemming from differ-
ent booklets are equivalent, which is part of a binomial model (cf. Klauer, 2011). 
Within the binomial model and under the prerequisite of random (stratified) item 
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sampling, an individual’s ability equals the proportion of correctly solved items on 
a power test, that is, accuracy.

Against this background, the aim of the present study is to test the book-
let equivalence assumption of the binomial model empirically. Based on a cur-
riculum-based measurement in mathematics, more specifically: basic arithmetic 
(LVD-M 2-4; Strathmann & Klauer, 2012), it takes a closer look at differences be-
tween booklets as one possible source to explain the variance of third and fourth 
graders’ scores.

2.  Method

2.1  Sample

The sample of this study is part of a larger research project funded by the Ger-
man Federal Ministry of Education and Research (BMBF) and approved by a lo-
cal ethics committee, with the aim to evaluate the effects of dyscalculia interven-
tions within an RTI framework. A total of n = 687 students (n = 345 Grade 3,  
n = 342 Grade 4) of ten elementary schools in the same German region with urban 
and rural parts participated in an initial screening at the beginning of school year 
2015/16.

After screening, schools were assigned to one of three experimental groups of 
roughly the same size (> 100 per group in each of the two Grades 3 and 4): a wait-
ing control group and two intervention groups who completed bi-weekly basic 
arithmetic progress-monitoring tests throughout a 19-weeks phase (more closely 
described in Section 2.3). During this study period, all children of the waiting con-
trol group received regular classroom instruction, irrespective of their performance 
in the initial screening. In the two intervention groups, those children with at-risk 
level performance or below (PR ≤ 25) on the initial screening (arithmetic subscale 
of a grade-specific German mathematics test) received trainings according to dif-
ferent intervention schemes: One group followed a two-tiered schemed with com-
puter-based training (Kuhn & Holling, 2014) for all children with at- or below-risk 
level performance and a three-tiered group with additional within-person small 
group training for the weakest 10% according to the initial arithmetic screening.

As the research aim of this study applies to regular school practice, we focus on 
the descriptions and results of the regularly instructed waiting control group: Chil-
dren who did not complete any of the ten progress-monitoring tests (cf. Section 
2.3) were excluded, leading to a final (waiting control) sample of n = 108 children 
in Grade 3 and n = 109 in Grade 4, with eighteen classrooms of four schools ( Table 
1). The number of participating children per classroom (i.e., children with paren-
tal consent obtained before participation) ranged between 6 and 24 (M = 12.06,  
SD = 4.78, median = 11). Next to mathematical ability measured with the arithme-
tic subtests of DEMAT 2+ (Krajewski et al., 2004) and DEMAT 3+ (Roick et al., 
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2004) as part of the screening, general intelligence (CFT 1-R; Weiß & Osterland, 
2013, or CFT 20-R; Weiß, 2006) and reading speed (SLS; Wimmer & Mayringer, 
2014) were captured for all children participating in the study (Table 1).

Table 1: Sample (Waiting Control Group)

Grade 3  
(n = 108, 58.3% male)

Grade 4  
(n = 109, 55.0% male)

School A B C D

Students 26 23 40 19

Classrooms 2 3 2 2

A B C D

Students 21 16 48 24

Classrooms 2 2 3 2

Abilities M SD Min Max M SD Min Max

Intelligence  
(CFT, IQ) 101.96 13.12 67.0 138.0 107.94b 16.52 61.0 148.0

Reading  
(SLS, RQ) 99.12a 14.11 65.1 134.9 98.03b 14.43 65.1 130.81

Arithmetic  
(DEMAT, T) 50.88a 8.87 28.0 71.0 49.07c 9.34 27.0 73.0

Note. CFT = Culture Fair Intelligence Test; IQ = intelligence quotient; SLS = Salzburger Lese-Screening 
[Salzburg reading screening test]; RQ = reading quotient; DEMAT = Deutscher Mathematiktest [German 
mathematics test].
The sample consists of the waiting control group of a larger response to intervention study. The four 
schools participating in this group are referred to as “A”, “B”, “C” and “D”. IQ and RQ values approximately 
follow an N(100, 15) distribution, T values an N(50, 10) distribution. Some statistics have a lower sample 
size due to missing values: a: n = 107; b: n = 108; c: n = 106.

2.2  Progress-Monitoring Instrument LVD-M 2-4

The progress-monitoring instrument “Learning-progress diagnostics – mathemat-
ics for grades two to four [German original: Lernverlaufsdiagnostik – Mathematik 
für zweite bis vierte Klassen]” (LVD-M 2-4; Strathmann & Klauer, 2012) is appli-
cable in the respective grades of elementary school. Each LVD-M 2-4 booklet con-
tains 24 tasks that cover the grade’s arithmetic (addition, subtraction, multiplica-
tion, division) part of the curriculum – in a way that it applies to all (or at least 
most) German states with their federal curricula.

While Grade 3 booklets (Table 2) consist of 19 mental (addition, subtraction, 
multiplication, division) and five written arithmetical problems (addition and sub-
traction), Grade 4 booklets (Table 3) mainly contain written tasks (18 items of all 
four basic arithmetic operations) and only six mental addition and subtraction 
items at the beginning. Beyond the solution mode (mental or written) and the basic 
arithmetic operation, the items also differ with regard to the task structure (Do the 
test takers have to calculate the result of an equation, like in 926 + 53 = ?, or fill in 
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a blank, like in 874 + ? = 900), number range (place value structure), and the need 
to perform carry operations (e.g., tens-carry).

Table 2: Task Structure of the LVD-M 2-4 Booklets, Grade 3

Item(s) Task structure Place value structure/arithmetic operator Mode Example

1–2 a + b = ? HTO + TO (with T+T ≤ 100) m 926 + 53 = ?

3 c – b = ? HTO – O (with ? > H, first O < second O) m 982 – 3 = ?

4 c – b = ? HTO – HTO m 856 – 117 = ?

5 a + b = ? HTO + TO (with ? ≤ 1000,  
TO + TO ≤ 100)

m 542 + 16 = ? 

6 a + ? = H00* HTO + TO m 874 + ? = 900

7 c – ? = a HTO – TO m 967 – ? = 952

8, 9, 11 a · b = ? times 6; times 9; times 50 m 4 · 6 = ?; …, 7 · 50 = ?

10 a · ? = c times 7 m 9 · ? = 63

12, 13 c = ? · b times 8; times 20 m 24 = 8 · ?; 80 = 20 · ?

14–19 c : b = ? divided by 6; …by 9; … by 8; … by 7; … by 
20; … by 50

m 24 : 6 = ?, …, 200 : 50 = ?

20 a + b + c = ? TO + TO + TO (with O + O + O > T, T + T 
+ T > H)

w 15 + 95 + 39 = 

21 a + b =? HTO + HTO (with O + O > T, T + T < H, 
H + H < Th)

w 338 + 336 = ?

22 c – b = ? HTO – HTO w 876 – 741 = ?

23 c – b = ? H00 – HTO w 700 – 168 = ?

24 c – b = ? 1000 – HTO w 1000– 439 = ?

Note. Th = thousand(s); H = hundred(s); T = ten(s); O = ones; m = mental; w = written.

*In the test manual the task structure is described as a + ? = H, we here chose “H00” instead of “H” to 
make clear that “full” hundreds are meant, like in Item 23.
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Table 3: Task Structure of the LVD-M 2-4 Booklets, Grade 4

Item(s) Task structure Place value structure/arithmetic 
operator

Mode Example

1 a + b = ? ThHTO + TO (with ? < 10.000) m 2557 + 43 = ?

2, 3 c – b = ? 10.000 – ThH > 0;  
ThHTO – ThHT > 0

m 10000 – 6600 = ? 
6728 – 4670 = ?

4 a + ? = c ThHTO + HT (with ? < 10.000) m 8243 + ? = 9023

5 a + ? = 10.000 ThHTO + (Th)HTO = 10.000 m 5862 + ? = 10000

6 c – ? = a ThHTO – ThH > 0 m 7536 – ? = 4936

7, 8 a + b = ? ThHTO* + ThHTO (with carry 
over once);  
TThThHTO* + TThThHTO = X0 
000 (with X < 10)

w 4157 + 2839 = ? 
30818 + 19182 = ?

9 a + b + c = ? ThHTO** + ThHTO + ThHTO 
(with carry over once or twice)

w 1092 + 3261 + 2516 =?

10–12 c – b = ? ThHTO** – ThHTO (with no carry 
over);  
TThThHTO** – TThThHTO (with 
carry over once or twice);  
1 000 000 – HThTThThHTO* > 0

w 6898 – 5267 = ?, …, 
1000000 – 403182 = ?

13–18 a · b = ? T0 · O;  
TO · O;  
HTO* · O;  
TO · T;  
HTO* · T;  
HTO · TO

w 30 · 9 = ?, …,  
275 · 60 = ?

19–24 c : b = ? HTO : O;  
ThHTO : O;  
TThThHTO* : O;  
ThHT* : T0; 
TThTHT : T;  
HThTThThHTO* : T

w 355 : 5 = ?, …,  
404580 : 60 = ?

Note. HTh = hundred thousand(s); TTh = ten thousand(s); Th = thousand(s); H = hundred(s); T = ten(s); 
O = ones; m = mental; w = written.

*One (but the first) place may be zero. **One or two (but the first) place(s) may be zero.
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Individual booklets are generated by means of stratified item sampling, that is, 
each booklet follows the same task and place value structure as well as order of 
the 24 item families. The specific representation within each of the item families 
is randomly drawn, assisted by software. This means that the term “item family” 
refers to the structural pattern of a task (as given in the lines of Table 2). For ex-
ample, Item Family 3 in Grade 3 booklets (c – b = ?, HTO – O (with ? > H, first  
O < second O)), could likewise be represented by the random representations  
“432 – 6 = ?” or “824 – 5 = ?”.

LVD-M 2-4 is designed as a power test with no specific time limit. Adminis-
tration in classroom settings takes approximately 15 to 20 minutes. Based on the 
norm sample, the test authors report split-half reliabilities of .87 (Grade 3) and .79 
(Grade 4) for measurements halfway through and .81 (Grade 3) and .83 (Grade 4) 
at the end of the school year (Strathmann & Klauer, 2012). In terms of criterion va-
lidity, LVD-M 2-4 scores substantially correlate with results on an established cur-
riculum-based test (DEMAT; correlations between .53 in Grade 3 and .80 in Grade 
4) and math grades (correlations between –.54 and –.77; Strathmann & Klauer, 
2012, p. 32).

Factor analyses of the norm sample data show that, when the 24 items are 
transformed to four subscores, one for each basic arithmetic operation, a strong 
general factor explains between 51% and 78% of the variance in Grade 3 and 4 
results (Strathmann & Klauer, 2012). Therefore, to evaluate the test, the number 
of correctly solved items per student across the whole booklet are counted. This 
means that the test score x (a) aggregates the different tasks to a general “compe-
tence to perform basic arithmetic operations” (Strathmann & Klauer, 2012, p. 31) 
and (b) does not distinguish between incorrectly solved and unsolved items (both 
are scored with 0). Based on the binomial model, the ability p of a student to deal 
with the content represented by the test is estimated as p = x ⁄ n, with n denoting the 
number of items and x the number of correctly solved items. While n is a constant, 
x is a binomially distributed random variable with the variance s² = n ⋅ p ⋅ (1 – p),  
so students with either very low or very high ps have more precise ability esti-
mates.
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2.3  Design

Starting in January and ending in early June 2016 (second half-year), LVD- 
M 2-4 was conducted bi-weekly, adding up to ten measurements. In all participat-
ing classes, the first assessment in January was led by a student assistant of the 
research team who advised each math teacher to administer the consecutive nine 
assessments. Teachers received an information brochure with background informa-
tion on LVD-M 2-4, the schedule, as well as a detailed, standardized instruction 
sheet. Every other week, teachers were provided with the set of tests to be complet-
ed by their class in the following assessment week (the specific assessment day was 
up to teachers) along with a reply envelope.

All students went through ten different booklets. The booklets (A–H) were pre-
sented in ten different orders (1–10) based on a Latin square design (Table 4), and 
each student was randomly assigned one of the presentation orders. To ensure that 
data strictly followed this design, booklets were labelled with students’ names and 
teachers were asked to return them directly after completion. Students participated 
on average on 9.35 of ten measurements (SD = 0.96), 54.63% of the participants in 
Grade 3 and 57.8% in Grade 4 completed all ten booklets.

After five measurements, that is, in spring 2016, all teachers were provided with 
intermediate feedback on (a) their respective class in comparison to other class-
es participating in the project as well as for (b) each student compared to the spe-
cific classroom. For both levels, class and students, the development was rated as 
positive trend, negative trend, or constant. In order to classify an individual stu-
dent trajectory, at least four data points had to be present, and Cohen’s f² in a lin-
ear regression model (dependent variable: LVD-M 2-4 score, independent varia-
ble: measurement time) had to correspond at least to a small effect size (Cohen’s  
f² ≥ .02).

Table 4: Measurement Scheme

Measurements 1–10 / Booklet versions A–J

1 2 3 4 5
Easter break

6 7 8 9 10
Order Jan Jan Feb Feb Mar Apr Apr May May Jun

1 A B C D E

Feedback

F G H I J

2 B C D E F G H I J A

3 C D E F G H I J A B

…

9 I J A B C D E F G H

10 J A B C D E F G H I
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2.4  Booklet Effects

2.4.1  Booklet Effects on the Total Score

The total score yijkt (number of correctly solved items out of 24) of child i in class 
j at time t completing booklet k was modeled by a fixed intercept and a fixed slope 
estimating the linear development across the ten bi-weekly measurements, as giv-
en in Model (1). This model and its extensions are practically relevant as the total 
score is the parameter used for test evaluation and interpretation.

Random effects were included to represent the following variance components: 
First, random intercepts on the level of (a) booklets (b0k), (b) classes (b0j), and (c) 
individuals (b0i|j) were specified to capture differences in the (baseline) test score 
due to each of the three levels. Second, the variances of random slopes on the class 
(b1j) and individual level (b1i|j) capture differences in linear growth across time be-
tween the instances of each level. Correlations between random intercepts and 
slopes represent the relation between (baseline) level of achievement and develop-
ment across time within classrooms or individuals. Based on restricted maximum 
likelihood estimation (REML), Model (1) was fitted separately for each of the two 
grades.
 

yijkt = β0 + b0k + b0j + b0i|j + (β1 + b1j + b1i|j) × timet + sijkt (1)

2.4.2  Item (Family) Effects on Solution Probability

By means of four successive models, the equivalence of randomly sampled book-
lets was not only assessed for the total score as in (1) but also on the item lev-
el. All four models are hierarchical logistic regressions (i.e., a multilevel general-
ized mixed model with logit link), with the logit of a correct solution denoted as  
η = log 

CURRICULUM-BASED MEASUREMENT OF BASIC ARITHMETIC: BOOKLET 
EQUIVALENCE?  9 

were specified to capture differences in the (baseline) test score due to each of the three levels. 

Second, the variances of random slopes on the class (b1j) and individual level (b1i|j) capture 

differences in linear growth across time between the instances of each level. Correlations 

between random intercepts and slopes represent the relation between (baseline) level of 

achievement and development across time within classrooms or individuals. Based on 

restricted maximum likelihood estimation (REML), Model (1) was fitted separately for each 

of the two grades. 

  
yijkt = β0 + b0k + b0j + b0i|j + (β1 + b1j + b1i|j) × timet + sijkt (1) 

 

2.4.2 Item (Family) Effects on Solution Probability 

By means of four successive models, the equivalence of randomly sampled booklets was not 

only assessed for the total score as in (1) but also on the item level. All four models are 

hierarchical logistic regressions (i.e., a multilevel generalized mixed model with logit link), 

with the logit of a correct solution denoted as η = log 0 !(#$%)
%'!(#$%)

1. 

First, a baseline Model (2) ignoring possible booklet effects served as a benchmark. This 

model includes the average item difficulty (fixed intercept β0), the fixed slope, as well as the 

random intercept (b0i) and the random slope per child i across measurements (b1i). Pairs of 

random effects (b0i, b1i) are assumed to follow a bivariate normal distribution, that is, their 

correlations are not restricted. This model is conceptually closest to the binomial model. 

ηit = β0 + b0i + (β1 + b1i) × timet (2) 

 

Second, in a consecutive Model (3), the outcome ηitc was predicted by a fixed (β1) and child-

specific random slope (b1i) representing the students’ development over the ten measurements 

points. The fixed effect δc, with c indicating the number of the respective family, expresses the 

average difficulty of each of the 24 item families and replaces the fixed intercept β0 of Model 

(2). 

ηitc = δc + b0i + (β1 + b1i) × timet (3) 

 

Third, to examine the variability of item family effects, random intercepts b0l for the 240 

different items l (240 = 24 item families times 10 booklets) were added to Model (3). In this 

Model (4), the fixed effect δc(l) treats all ten randomly drawn members of a specific item family 

as if they were different items. The item-level random intercept b0l was assumed to be 

.
First, a baseline Model (2) ignoring possible booklet effects served as a bench-

mark. This model includes the average item difficulty (fixed intercept β0), the fixed 
slope, as well as the random intercept (b0i) and the random slope per child i across 
measurements (b1i). Pairs of random effects (b0i, b1i) are assumed to follow a bivar-
iate normal distribution, that is, their correlations are not restricted. This model is 
conceptually closest to the binomial model.

ηit = β0 + b0i + (β1 + b1i) × timet (2)

Second, in a consecutive Model (3), the outcome ηitc was predicted by a fixed (β1) 
and child-specific random slope (b1i) representing the students’ development over 
the ten measurements points. The fixed effect δc, with c indicating the number of 



Christin Vanauer, Sarah Chromik, Philipp Doebler, & Jörg-Tobias Kuhn

74 JERO, Vol. 14, No. 1 (2022)

the respective family, expresses the average difficulty of each of the 24 item fami-
lies and replaces the fixed intercept β0 of Model (2).

ηitc = δc + b0i + (β1 + b1i) × timet (3)

Third, to examine the variability of item family effects, random intercepts b0l for 
the 240 different items l (240 = 24 item families times 10 booklets) were added 
to Model (3). In this Model (4), the fixed effect δc(l) treats all ten randomly drawn 
members of a specific item family as if they were different items. The item-lev-
el random intercept b0l was assumed to be independent of all other random effects 
and to be N(0,ω2)-distributed. In Model (4), the variance parameter ω2 expresses a 
“global variance” which is independent of the item families.

ηilt = δc(l) + b0l + b0i + (β1 + b1i) × timet (4)

Fourth, to investigate even more fine-grained item effects, Model (4) was extend-
ed by a random intercept for each item clustered by booklets (b0l,c(l), again normal-
ly distributed). In other words, Model (5) assesses to what extent items within one 
family (task type) are homogeneous or heterogeneous across the ten randomly gen-
erated booklets. Thus, in Model (5), the item variance depends on the item families.

ηilt = δc(l) + b0i + b0l,c(l) + (β1 + b1i) × timet (5)

3.  Results

3.1  Booklet Invariance in a Sample Receiving Regular 
Instruction

3.1.1  Booklet Effects on the Total Score

In Grade 3 (n = 108), the variance of random intercepts (level effects) between 
children (var[b0i|j] = 25.722, Table 5) was over 100 times larger than the variance 
between booklets (k = 10, var[b0k] = 0.245, Table 5). Moreover, also the class-lev-
el effect (var[b0j] = 0.163, Table 5) measured only a small proportion (0.6%) of 
the variance on the individual level. On the class level, random intercepts (b0j) and 
slopes (b1j) correlated positively (r = .45), meaning that higher class-level baseline 
scores tended to go along with steeper slopes (so-called Matthew effect). On the in-
dividual level, the correlation between random intercepts (b0i|j) and slopes (b1i|j) 
was negative, that is, individuals with a higher (baseline) achievement level showed 
a flatter progress (r = –.61).
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In Grade 4 (n = 109), the effects reported for Grade 3 replicated in direction 
but varied in size: The variance of random intercepts between individuals was al-
most 50 times larger than between booklets. While the booklet-level variance of 
random intercepts was similar in both grades (var[b0k] = 0.25 in Grade 3 vs. 0.28 
in Grade 4), individual-level variance was lower in Grade 4 (var[b0i|j] = 13.80 vs. 
25.72), meaning that individual baseline levels were more heterogeneous in Grade 
3. Again, the class-level variance of random intercepts only measured a small pro-
portion (4.2%) of the individual-level variance. The class-level Matthew effect was 
more pronounced in the Grade 4 sample based on mainly written arithmetic book-
lets (r = .55) compared to Grade 3 where booklets contain mainly mental arithme-
tic tasks (r = .45, see above). These effects went along with a lower mean baseline 
(fixed intercept) in Grade 4 (9.31) compared to Grade 3 (15.39). On the individ-
ual level, the correlation between random intercepts and slopes was negative but 
smaller (r = –.43).

Table 5: Variances and Correlations of Random Effects in Model (1)

Level Parameter Grade 3 
(n = 108)

Grade 4
(n = 109)

Fixed effects

β0 15.38 (0.54) 9.31 (0.47)

β1 0.18 (0.15) 0.27 (0.12)

Random effects

Booklet var(b0k) 0.25 0.28

Class var(b0j) 0.16 0.59

Class var(b1j) 0.20 0.11

Class cor(b0j, b1j) .45 .55

Individual var(b0i|j) 25.72 13.80

Individual var(b1i|j) 0.22 0.23

Individual cor(b0i|j, b1i|j) –.61 –.43

Individual var(Residual) 18.67 9.41

Note. The standard error of estimation (fixed effects) is indicated in parentheses.

3.1.2  Item (Family) Effects on Solution Probability

Table 6 displays an overview of the four models expressing item family effects: In 
both grades, Model (3) containing an item-family-specific fixed effect δc showed 
a better fit than the baseline Model (2), indicating that difficulty estimates vary 
visibly between item families (Grade 3: χ²[23] = 2555.8, p < .001, Grade 4:  
χ²[23] = 2743.4, p < .001). In Grade 3, Item 9 (times 9, cf. Table 2) was the easiest 
(δc = 2.79, Table 7) while Item 24 (written subtraction: 1000 – HTO) was the hard-
est (δc = –0.96). Transformed to the more intuitive level of solution probability this 
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means, for example that halfway through the measurement period (measurement 
timet = 5) in Grade 3 items with δc below –0.65 had a probability of correct solu-
tion of less than 50%, items with δc above –.65 a solution probability of more than 
50%, and items with δc > .23 a solution probability of over 95%. In Grade 4, Item 
13 (T  O) was the easiest (δc = 2.27, Table 7) and Item 24 (HThTThThHTO* : T) 
the hardest (δc = –1.81, Table 7).

The main result contributed by Model (4) is that the variance of the ran-
dom intercepts clustered by item families, that is, task types, was only one eighth 
(Grade 3: var[b0l] = 0.09, Table 8) or one tenth (Grade 4: var[b0l] = 0.12, Table 8) 
of the variance related to individual subjects (Grade 3: var[b0i] = 0.72, Grade 4:  
var[b0i] = 1.18, Table 8). Although the additional variance component significant-
ly improved model fit (Grade 3: χ²[1] = 61.30, p < .001, Grade 4: χ²[23] = 137.49, 
p <.001), the effect was relatively small (cf. AIC in Table 6). This means that gen-
eral level differences in achievement are far more heterogeneous between students 
than between items.

In both grades, difficulty effects (random intercepts) of the 24 items rep-
resenting 24 tasks differed in the extent to which they varied across booklets 
(comparison of Models [4] and [5]: Grade 3: χ²[23] = 46.26, p < .01; Grade 4:  
χ²[23] = 70.47, p < .001). While some items produced homogeneous difficulties, 
that is, variances estimated close to zero, across the ten booklets (Grade 3: Items 
3, 8, 13, 14, 21, 23, and 24; Grade 4: Items 5, 9, 11, 19, 20, 21, and 22; Table 9), 
others varied more strongly (Grade 3: e.g., Items 7, 9, 10, 11, 17, and 22; Grade 4: 
Items 1, 3, 4, 6; Table 9). In Grade 3, the most homogeneous items comprised all 
four arithmetic operations, four of them were mental, three written tasks. The most 
heterogeneous items were mainly mental and multiplication or division tasks. In 
Grade 4, the most homogeneous items were all but one (Item 5) written tasks, re-
quiring addition, subtraction, and division. The four most heterogeneous ones were 
mental tasks. While in Grade 4 the most difficulty-heterogeneous items could be 
found in the initial part of the booklet (first quarter), in Grade 3 difficulty-variant 
items were spread across the entire booklet.

The correlation between average difficulty and cross-booklet heterogeneity (in 
difficulty) of items, r(δc(l) , var[b0l,c(l)], was r = .29 (p = .16) in Grade 3 and r = .06  
(p = .77) in Grade 4.
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Table 6: Comparison of Models Expressing Item (Family) Effects on Solution Probability

Model Formula Description AIC (p model comparison)

Grade 3 
(n = 108)

Grade 4 
(n = 109)

(2) ηit = β0 + b0i + (β1 + b1i) 
× timet

Baseline model ignoring possible 
booklet effects (benchmark).

18 208 20 904 

(3) ηitc = δc + b0i + (β1 + b1i) 
× timet

The fixed effect δc expresses the aver-
age difficulty of each of the 24 item 
families.

15 698 
(< .001)

18 206 
(< .001)

(4) ηilt = δc(l) + b0l + b0i + (β1 + 
b1i) × timet

Random intercepts b0l for the 240 
different items l (240 = 24 item fami-
lies times 10 booklets) express item 
family effects.

15 638 
(< .001)

18 071 
(< .001)

(5) ηilt = δc(l) + b0i + b0l,c(l) + 
(β1 + b1i) × timet

The random intercept b0l,c(l) for each 
item clustered by booklets assesses to 
what extent items within one family 
(task type) are homogeneous or het-
erogeneous across the ten randomly 
generated booklets.

15 638 
(< .01)

18 047 
(< .001)

Note. Meaning of the model parameters in the order of appearance: η = logit of a correct solution (link level);  
β0 = average item difficulty (fixed intercept); b0i = child-specific random intercept; b1i = child-specific random 
slope; β1 = fixed slope, timet = measurement time (1–10); δc = item-specific fixed effect (average difficulty of each 
of the 24 item families); δc(l) = item-specific fixed effect (all 10 randomly drawn representations of a family are 
treated as different items); b0l = item-specific random intercepts (for all 240 different items); b0l,c(l) = random 
intercept for each item clustered by booklets indices; i = individual; t = time; c = item family; l = booklet; the value 
in parentheses is the p value of the model comparison (χ² difference test) of the given model to the model before, 
for example of Model (3) compared to Model (2).
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Table 7: Fixed and Random Effects of Model (3), Logit Link

Effect (level) Parameter
Grade 3 

(n = 108)
Grade 4

(n = 109)

Fixed slope β1 0.13 (0.01) 0.08 (0.01)

Fixed (item) δItem1 1.73 (0.14) 0.95 (0.14)

Fixed (item) δItem2 1.96 (0.14) 0.08 (0.13)

Fixed (item) δItem3 1.24 (0.13) –0.25 (0.13)

Fixed (item) δItem4 0.59 (0.12) –0.91 (0.14)

Fixed (item) δItem5 0.95 (0.13) –0.42 (0.13)

Fixed (item) δItem6 0.95 (0.13) 0.18 (0.14)

Fixed (item) δItem7 0.31 (0.13) 1.97 (0.15)

Fixed (item) δItem8 2.71 (0.18) 1.85 (0.15)

Fixed (item) δItem9 2.79 (0.19) 1.52 (0.14)

Fixed (item) δItem10 2.20 (0.16) 1.72 (0.15)

Fixed (item) δItem11 1.78 (0.15) –0.08 (0.13)

Fixed (item) δItem12 1.84 (0.15) –0.56 (0.13)

Fixed (item) δItem13 1.16 (0.13) 2.27 (0.16)

Fixed (item) δItem14 2.25 (0.16) 0.65 (0.13)

Fixed (item) δItem15 2.11 (0.16) 0.63 (0.14)

Fixed (item) δItem16 1.81 (0.15) 0.25 (0.13)

Fixed (item) δItem17 2.25 (0.16) –0.11 (0.13)

Fixed (item) δItem18 1.21 (0.14) –0.91 (0.14)

Fixed (item) δItem19 1.30 (0.13) 0.31 (0.15)

Fixed (item) δItem20 0.17 (0.12) –0.14 (0.15)

Fixed (item) δItem21 1.12 (0.13) –0.24 (0.16)

Fixed (item) δItem22 0.05 (0.12) –1.39 (0.18)

Fixed (item) δItem23 -0.96 (0.12) –1.74 (0.21)

Fixed (item) δItem24 -0.96 (0.12) –1.81 (0.23)

Random intercept (individual) var(b0i) 0.69 1.14

Random slope (individual) var(b1i) 0.01 0.01

Correlation of random intercept and slope (individual) cor(b0i, b1i) .22 –.23

Note. The standard error of estimation (fixed effects) is indicated in parentheses; the structure of Items 
1–24 is detailed in Tables 2 and 3.
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Table 8:  Random Effects of Model (4)

Level Parameter Grade 3 
(n = 108)

Grade 4
(n = 109)

Item var(b0l) 0.094 0.122

Individual var(b0i) 0.723 1.176

Individual var(b1i) 0.008 0.005

Individual cor(b0i, b1i) .21 –.22

Table 9: Variances of Model (5)

Variance of the random intercept for each item clustered by booklets: var(b0l,c(l))

Item family c Grade 3 Grade 4

1 0.16 0.41

2 0.06 0.04

3 0.00 0.46

4 0.18 0.21

5 0.06 0.00

6 0.02 0.84

7 0.25 0.03

8 0.00 0.03

9 0.37 0.00

10 0.43 0.12

11 0.23 0.00

12 0.19 0.01

13 0.00 0.14

14 0.00 0.07

15 0.13 0.09

16 0.09 0.11

17 0.25 0.08

18 0.01 0.11

19 0.04 0.00

20 0.08 0.00

21 0.00 0.00

22 0.31 0.00

23 0.00 0.01

24 0.00 0.06

Child-level Grade 3 Grade 4

b0i 0.73 1.18

Note. The structure of Items 1–24 is detailed in Tables 2 and 3.
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3.2  Replication Studies in Two Intervention Groups

So far, this paper concentrated on a group of 108 third and 109 fourth graders who 
received regular instruction during a 19 weeks progress-monitoring phase. This 
waiting control group of a larger RTI evaluation study represents classroom prac-
tice without systematic intervention.

To test and discuss the generalizability of the findings on booklet equivalence, 
the same analyses were also carried out with the two intervention groups of the 
same study. In the first of these groups (Intervention Group 1), children with arith-
metic performance at risk level or below (PR ≤ 25) received individual comput-
er-based training with a dyscalculia training app throughout the 19 weeks interven-
tion phase. In the second group (Intervention Group 2), a three-tiered scheme was 
realized: Children in the risk range (25 ≤ PR ≤ 10) worked with the training app, 
while children with arithmetic performance below PR 10 received the training app 
and an additional weekly small group in-person training. Taken together, the two 
intervention groups represent a population of children receiving needs-based in-
tervention beyond regular classroom instruction: In both intervention groups and 
grades, the ratio of between-children variance (var[b0i|j]) and between-booklets 
variance (var[b0k]) was even more pronounced than in the waiting control group: 
In Intervention Group 1 (training app), the between-children variance was 229 
times (Grade 3) or 252 times (Grade 4) larger than the between-booklet variance 
(Table A1). In Intervention Group 2 (training app + small group intervention), this 
ratio was 362 (Grade 3) and 53 (Grade 4), respectively (Table A1).

Beyond booklet equivalence, results of the intervention and waiting control 
groups differed in the following ways: First, class-level variance of the random in-
tercepts (var[b0j]) was larger in the intervention groups compared to the waiting 
control group (Table A1), pointing to more heterogeneity between classes in the in-
tervention samples. Second, the correlational patterns of random effects were dif-
ferent in the intervention groups: While random intercepts and slopes on class lev-
el were positively correlated in the waiting control group (cor[b0j, b1j] = .45 and 
.55, Table 5), the opposite was the case for Grade 3 students in both intervention 
groups (cor[b0j, b1j] = –.75 and –.74, Table A1), and Grade 4 students in Interven-
tion Group 2 (cor[b0j, b1j] = –.57, Table A1). Item-level variances were even smaller 
than in the waiting control group, with a maximum of 0.08 (Item 16, Grade 3) and 
0.05 (Item 10, Grade 4) in the first intervention group and 0.20 (Item 9, Grade 3) 
and 0.08 (Item 22, Grade 4) in the second intervention group (Table A3).
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4.  Discussion

4.1  Summary and Relevance

This study is based on an established German math CBM instrument which was 
applied in a third- and fourth-grade sample receiving regular instruction during 
a school half-year with ten bi-weekly measurements. The instrument, LVD-M 2-4 
(Strathmann & Klauer, 2012), is broadly relevant, since it is easily applicable in 
classroom contexts and valid for the whole achievement range within the German 
elementary school curriculum.

Against this background, the present study tested booklet effects to examine to 
what extent the theoretically justified item-sampling approach of LVD-M 2-4 is em-
pirically backed up. Analyses with linear mixed models showed that in both grades 
the variance of test scores attributable to different booklets was so small in relation 
to the between-student variance to be practically irrelevant. This is an important 
prerequisite for the practical interpretation of repeatedly measured (longitudinal) 
test scores valid measures of individual learning. Generalized linear mixed mod-
els revealed that item difficulty varied within some of the item families, while oth-
ers showed close to zero variance across the ten booklets. Although, on a descrip-
tive level, heterogeneity tended to correlate with item difficulty in Grade 3 and was 
more pronounced for mental compared to written tasks in Grade 4, no clear pat-
tern explaining this source of variance emerged. Importantly, the effect was insub-
stantial in comparison with the effects due to individual differences between stu-
dents. To learn more about the inconclusive pattern of differences in across-booklet 
heterogeneity (of difficulties) for the different item families (Table 9), quasi-exper-
imental studies could help to unravel content (task type, arithmetic operation, etc.) 
from sequence effects (position, order).

Taken together, it seems legitimate to assume that the t = 10 measurements of 
LVD-M 2-4 overall express the same ability. This finding is relevant for the concep-
tualization perspective on progress-monitoring instruments and the first stage of 
CBM research described by Fuchs (2004): Like in previous research (Christ & Vin-
ing, 2006), it corroborates that stratified random item-sampling within predefined 
competences (e.g., written or mental arithmetic, with a certain task and place value 
structure; cf. Table 2 and Table 3) leads to comparable parallel tests, which is a key 
element of generic test construction (Rohwer, 2015).

The two dyscalculia intervention groups of the larger RTI study differed from 
the regular-instruction group in some respect, for example, showing a reversed 
Matthew effect on the class level (weaker start level along with higher improve-
ment), which might be to some degree explainable by a compensation effect caused 
by the intervention framework. However, the main finding of this study, that is, a 
relatively low proportion of test score variance accounted for by different booklets 
compared to different individuals, clearly generalized to two intervention samples. 
In other words, equivalence of LVD-M 2-4 booklets can also be assumed for RTI 
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settings with in-depth fostering of students with special educational needs in ba-
sic arithmetic.

This is an important precondition for further research aims, for example, as-
sessing sensitivity to change or deriving norms for the learning slope. Such fol-
low-up goals are only reasonable if they build on solid grounds in terms of book-
let equivalence.

4.2  Limitations and Further Directions

The results of this study (negligible booklet effects) are limited by its context: the 
methodological approach, the instrument, and possibly also the population under-
lying the regional sample in this study.

Regarding the methodological approach, in the current study, we did not pro-
ceed by calibrating all items a priori and then investigating DIF or measurement 
invariance. Rather, test booklets were randomly allocated to students, correspond-
ing to the random groups design as outlined by Kolen and Brennan (2014). Accord-
ing to this approach, “If the same scaling convention [...] for ability is used [...], 
then the parameter estimates [...] are assumed to be on the same scale without fur-
ther transformation” (p. 182). Hence, we assumed that all test scores and item pa-
rameters were on a comparable scale.

We utilized a statistical approach similar to generalizability theory (Brennan, 
2001) in which we compared the magnitude of variance components (cf. Fan & 
Hansmann, 2015) to establish empirical evidence of test equivalence. This ap-
proach does not focus on the equivalence of single item parameters (e.g., classical 
DIF or measurement invariance approaches). Instead, the approach chosen here 
deals with the variance of relevant parameters or factors (e.g., item parameters, 
test scores). In the case of test equivalence, the variance component pertaining to 
booklets or items should be very small and negligible, compared to factors that 
should substantially contribute to total variance (e.g., differences in person ability, 
time points). In fact, the complete absence of item (family)-level and booklet-level 
variance would imply that parameters of items in the same position are stable be-
tween booklets. The tests would then have a strong form of measurement equiva-
lence, in the sense that there was neither DIF nor DTF and the test would parallel 
in the sense of CTT.

Although the results provided here lend support to the assumption that test 
forms were practically equivalent, we recognize the limitations of the chosen sta-
tistical approach. Specifically, by focusing on variance components, we did not 
look at single item parameters, which would be helpful in identifying those items 
whose presence substantially enlarges the family-wise variance component. Fur-
ther, it remains difficult to provide a suitable effect size of test or item equivalence 
in this context. At what (relative) test form variance component magnitude can 
test equivalence be assumed, and when does it not hold? Does test form equiva-
lence obtained using an approach comparing variance components also hold un-
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der a DIF or measurement invariance approach? These questions necessitate fur-
ther research.

Regarding the instrument (LVD-M 2-4) and its construction rationale, we in-
vestigated the equivalence of math progress-monitoring tests that were construct-
ed using a systematic rule-based item design approach. In rule-based item design, 
item features that should theoretically affect item difficulty are identified (Enright 
et al., 2002). Once these essential item features are known, design of equivalent 
test forms becomes more straightforward.

However, available progress-monitoring tests differ in how thoroughly essential 
item features were identified and/or taken into consideration in test design. Some 
progress-monitoring measures are based on comprehensive and detailed, rule-
based item design (e.g., Förster & Kuhn, 2021; Klauer & Strathmann, 2012), pro-
viding evidence for a high degree of test equivalence. Other progress-monitoring 
measures are less explicit concerning the rationale for test and item design. The 
results obtained in this study, therefore, should not be seen as representative for 
progress-monitoring measures in general. Rather, they should be regarded as pre-
liminary evidence of equivalence of a progress-monitoring measure that was con-
structed using rule-based item design.

Moreover, to what extent the findings can be generalized to broader content do-
mains (like in quop, which includes precurricular basic numerical abilities in ear-
ly-grade version and aspects like geometry or basic statistics in later grades; Sou-
vignier, 2018) or different administration modes (computer-based instead of 
paper-pencil) remain empirical questions for subsequent studies.
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Appendix

Table A1: Variances and Correlations of Random Effects in Model (1) in the Two 
Intervention Groups

Level Parameter

Intervention group 1 Intervention group 2

Grade 3 
(n = 140)

Grade 4
(n = 118)

Grade 3 
(n = 103)

Grade 4
(n = 125)

Fixed effects

β0 14.52 (1.02) 8.44 (0.85) 13.18 (1.48) 8.23 (1.06)

β1 0.17 (0.16) 0.36 (0.14) 0.10 (0.21) 0.22 (0.12)

Random effects

Booklet var(b0k) 0.18 0.08 0.10 0.28

Class var(b0j) 6.44 4.09 17.47 8.66

Class var(b1j) 0.46 0.15 0.40 0.11

Class cor(b0j, b1j) –.75 –.08 –.74 –.57

Individual var(b0i|j) 42.10 20.96 37.61 14.62

Individual var(b1i|j) 0.27 0.19 0.34 0.28

Individual cor(b0i|j, b1i|j) –.45 .01 –.59 –.26

Individual var(Residual) 13.89 8.85 23.26 15.17

Table A2: Random Effects of Model (4) in the Two Intervention Groups

Level Parameter

Intervention Group 1 Intervention Group 2

Grade 3 
(n = 129)

Grade 4
(n = 104)

Grade 3 
(n = 103)

Grade 4
(n = 124)

Item var(b0l) 0.00 0.00 0.00 0.00

Individual var(b0i) 0.70 0.59 1.86 0.98

Individual var(b1i) 0.01 0.00 0.09 0.00

Individual cor(b0i, b1i) –.11 .20 –.51 –.10
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Table A3: Variances of Model (5) in the Two Intervention Groups

Variance of the random intercept for each item clustered by booklets: var(b0l,c(l))

Intervention Group 1 Intervention Group 2

Item family c Grade 3 Grade 4 Grade 3 Grade 4

1 0.00 0.00 0.03 0.00

2 0.00 0.00 0.00 0.03

3 0.00 0.03 0.00 0.00

4 0.00 0.00 0.00 0.00

5 0.00 0.03 0.00 0.00

6 0.00 0.00 0.00 0.00

7 0.00 0.01 0.00 0.00

8 0.00 0.00 0.03 0.00

9 0.04 0.00 0.20 0.00

10 0.03 0.05 0.00 0.00

11 0.00 0.00 0.00 0.00

12 0.00 0.00 0.00 0.01

13 0.01 0.00 0.04 0.00

14 0.00 0.00 0.00 0.01

15 0.00 0.00 0.00 0.01

16 0.08 0.03 0.00 0.00

17 0.06 0.00 0.00 0.00

18 0.05 0.02 0.00 0.00

19 0.00 0.00 0.00 0.07

20 0.00 0.04 0.00 0.00

21 0.00 0.03 0.04 0.00

22 0.00 0.00 0.00 0.08

23 0.00 0.00 0.00 0.00

24 0.00 0.00 0.00 0.03

b0i 0.70 0.59 1.87 0.978

Note. The structure of Items 1–24 is described in Table 2 and Table 3.


