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Abstract 1

Formative assessment supplies valuable feedback for teachers and learners, and 
has been facilitated by computerized implementations. While longitudinal with-
in-student assessment or within-class comparisons are useful, a normative in-
terpretation of an individual’s course of learning can only be given relative to a 
reference population. As current computerized assessment systems sample items 
from pools or adapt tests, monitored students might work on non-overlapping 
item sets, so that classic sum scores cannot be compared directly. To meet this 
challenge, the Smooth Growth and Linear Deviations Rasch Model (SGLDRM) is 
introduced, an extension of Rasch’s item response theory model for binary test 
data. With the help of spline functions a smooth global course of learning is in-
cluded. The model is flexible enough to accommodate increases and/or decreas-
es of the mean ability level, which might be more or less pronounced at each 
mea surement occasion. On the individual level, a random slope and a random in-
tercept with amenable interpretations modify the global course of learning. Two 
measurement occasions suffice to estimate person-specific courses. A likelihood 
ratio test allows identifying students whose performance differs from the mean 
course. The methodology is illustrated with data from an online dyscalculia as-
sessment and training.

Keywords
item response theory, latent growth curve model, formative assessment, random 
slope random intercept model, smooth growth curve
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Modellierung eines glatten Lernverlaufs und Testung 
individueller Abweichungen von einem globalen Verlauf

Zusammenfassung
Formatives Assessment liefert Lernenden und Lehrenden wertvolles Feedback und 
ist durch computergestützte Implementationen stark vereinfacht worden. Zwar 
sind längsschnittliche individuelle Assessments und Vergleiche innerhalb einer 
Klasse nützlich, aber normative Interpretationen von individuellen Lernverläu-
fen können nur relativ zu einer Referenzpopulation gegeben werden. Da aktuelle 
computergestützte Assessment-Systeme Items aus Pools zufällig auswählen oder 
Tests adaptieren, arbeiten die Getesteten u. U. auf sich nicht überlappenden Item-
mengen, wodurch klassische Summenscores nicht direkt vergleichbar sind. Um 
dem zu begegnen, wird das Smooth Growth and Linear Deviations Rasch Mo-
del (SGLDRM) eingeführt, eine Erweiterung des Rasch-Modells für binäre Test-
daten aus der Item-Response-Theorie. Durch Splines wird ein glatter globaler 
Verlauf eingebunden. Das Modell ist flexibel genug, um Anstiege und Verringe-
rungen des mittleren Fähigkeitsniveaus abzubilden, welche je nach Messzeitpunkt 
unterschiedlich stark ausgeprägt sein dürfen. Auf der individuellen Ebene wird 
der globale Lernverlauf durch gut interpretierbare zufällige Achsenabschnitte 
und Steigungen modifiziert. Zwei Messzeitpunkte reichen aus, um personenspe-
zifische Verläufe zu schätzen. Ein Likelihood-Quotienten-Test erlaubt es, Lernen-
de zu identifizieren, die vom mittleren Lernverlauf abweichen. Die Methode wird 
anhand von Daten aus einem Online-System zur Diagnostik und Behandlung von 
Dyskalkulie illustriert.

Schlagworte
Item-Response-Theorie, latentes Wachstumskurvenmodell, formatives Assess-
ment, Random-Slope-Random-Intercept-Modell, glatte Wachstumskurve

1.  Introduction

The possibility to efficiently implement and administer test items with computer-
ized test platforms facilitates the routine assessment of learning development (e.g., 
Klinkenberg et al., 2011; Kuhn et al., 2018; Mühling et al., 2017; Souvignier et al., 
2014), and has progressed to a stage where system output informs school teachers 
rather than research scientists (e.g., Schurig et al., 2019). Next to processing test 
data to extract information on the overall development, it can also be of interest to 
track individual progress, give feedback on the performance, and initiate remedi-
al measures if necessary, in the tradition of assessment for learning (Black & Wil-
iam, 1998). In order to utilize the assets of computer testing, we focus on the al-
ready highly developed item response theory (IRT) which offers strong frameworks 
for model extensions.
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IRT models for longitudinal data are becoming increasingly important to track 
educational progress on a global and individual level. IRT provides several frame-
works to model subject-based growth over multiple occasions, many of them being 
extensions of the Rasch (1960) model for binary item responses. A line of research 
starting with the seminal paper of Rost and Spada (1983) focuses on latent differ-
ences between occasions (Andersen, 1985; Embretson, 1991; Fischer, 1973, 1976, 
1989). Initially, the approach was intended for two fixed occasions, but subsequent 
models were more general. Noteworthy refinements include the generalization of 
this approach to the two parameter logistic case by Embretson (1997), which was 
further extended (Andrade & Tavares, 2005).

However, there are still several issues that should be addressed and improved 
when modeling longitudinal data. Especially in computerized test and training sys-
tems, data collection often does not happen at fixed discrete equally spaced occa-
sions, be it due to randomness or by design. Adequate models should allow for 
many if not all time values in an interval. Therefore, it is convenient to consid-
er the time component to be continuous, and observations to be snap-shots of the 
current ability (e.g., Hecht et al., 2019). By using classic parametric models to de-
scribe the global progression of performance, for example, linear or quadratic, a 
certain shape of the global growth curve is presumed. This can severely restrict 
model fit and lead to biased representations.

In this study, we propose a non-parametric method to estimate a smooth global 
trend based on splines. This approach enables us to detect even small unexpected 
changes over time. Although the main focus of modeling longitudinal data in IRT 
has been the growth of a population or several subgroups, subject-specific perfor-
mance can be of interest, for example when psychometric tests are used as forma-
tive evaluation tools parallel to educational interventions. By allowing a linear devi-
ation from the average growth for each subject, we can track the individual starting 
level and gain given by a random intercept and slope, respectively. A likelihood ra-
tio test allows identifying individual courses that significantly deviate from the av-
erage growth. As a consequence, feedback is possible and the initiation of interven-
tions based on the intensity and direction of the deviation.

Saha (2016) presents a similar approach: The Bayesian dynamic item response 
model with semi-parametric and smooth ability growth (DIR-SMSG) uses B-spline 
functions to estimate ability growth in a dynamic IRT (Wang et al., 2013) frame-
work. Saha’s (2016) model works with a discrete time component and assumes 
ability growth to be monotone. The present approach avoids monotonicity assump-
tions, incorporating growth, set-backs, and learning boosts. In contrast to the ap-
proach presented here, the DIR-SMSG uses spline functions to estimate each per-
son’s ability separately. While a flexible model for individual growth results, the 
approach requires relatively dense data on the person level. To ensure accessi-
ble interpretation of both the population ability growth and person-specific devia-
tions from the average growth the Smooth Growth Linear Deviation Rasch Model 
(SGLDRM) assumes person-specific linear deviations from the global trend. In this 
case, only two or more measurement occasions are required in order to estimate a 
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person-specific ability growth which can be beneficial when only relatively few data 
are observed on the person level. In terms of complexity, the SGLDRM is between 
longitudinal IRT models with strong linearity assumptions on the logit scale and 
the DIR-SMSG.

The population’s development is an explicit part of the SGLDRM, while it is 
necessary to treat individual subject effects as random effects to avoid over-para-
metrization (Baayen et al., 2008; Hecht et al., 2019). Realizations of these random 
effects are not estimated when fitting the model (but their variances and covari-
ances are). However, the estimates (in the form of conditional modes/best linear 
unbiased predictors, BLUPs; Robinson, 1991) can be obtained subsequently.

The remainder of this paper is organized as follows: The advantages of item-lev-
el scaling in the context of formative assessment are stressed in the Section 2 and 
it is explained why non-linear growth curves safeguard against potential problems. 
Next, the SGLDRM, an extension of the Rasch model for longitudinal data, is pre-
sented: The model features a global smooth curve and individual deviations. The 
model can be seen as a generalized additive mixed model, leading to an estimation 
approach. The subsequent Section 4 develops a likelihood ratio test which helps to 
discern whether individual courses of learning deviate from the global course. The 
test is evaluated by simulation. An application to data from an online sample of 
primary school students with math difficulties or dyscalculia illustrates the useful-
ness of the method and is contained in Section 5. We close with some remarks on 
the limitation of the method and its relationship to existing methods.

2.  Flexible Scaling on the Item Level With Non-Linear 
Growth Curves

Scaling on item level is a central characteristic of IRT and it produces some clear 
advantages compared to scaling on (sub-)test level. This has been stressed espe-
cially in the context of longitudinal applications (Reise & Haviland, 2005), though 
Jabrayilov et al. (2016) caution, that sufficient test length is still needed: An IRT 
model with acceptable fit for at least 20 items is recommended to reach accept-
able misclassification rates of latent change. More generally, an ideal item set for 
mea suring change provides high Fisher information for relevant parts of the abili-
ty continuum, so that person-specific reliability of the change scores is acceptable. 
When scaling on the level of a whole test, for example, with raw scores, the com-
parison of test results requires the tests to be equally difficult and the response 
patterns to be similar in the sense that subjects with the same true score make 
mistakes on items with similar difficulty. Creating such parallel tests for inten-
sive longitudinal situations is complex, but not impossible (e.g., Fuchs et al., 1984; 
Strathmann & Klauer, 2012).

In contrast, scaling on item level allows calibrating large item pools, each test 
taker only working on a subset of items (Kolen & Brennan, 2004). These subsets 
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can even be assembled randomly, or – for more effective and efficient testing – be 
drawn adaptively in computerized adaptive tests (CATs; van der Linden & Glas, 
2000). Adaptive testing avoids ceiling and floor effects within the limits of the test 
design. With item-level scaling it is possible to model data from tests with time 
limits as it is not required for tests to be of the same length. Note, that this will 
work under the premise that the difficulty of an item is not affected by the number 
of items assigned in a test. However, item position effects do affect item param-
eters and include phenomena such as within-test learning and fatigue, and have 
been documented by Le (2007), Debeer and Janssen (2013), Debeer et al. (2014), 
Nagy et al. (2018), and Wu et al. (2019). A crucial problem is a correlation of item 
parameters and item position, say if a linear test design is used in estimation, but 
item order is varied subsequently. Hence, testing systems should either not vary 
item position or vary item position in the calibration system.

The validity of individual items can be examined when scaling on item level, 
which is beneficial for the process of item construction. These advantages of scaling 
on the item level require an overlap of the item subsets administered to each per-
son, so that item parameters are properly linked (Kolen & Brennan, 2004). Ran-
domly sampling items is a typical way to achieve this. The discussion highlights 
further caveats.

Next to flexibility with respect to the item subsets, the approach we introduce 
is flexible with respect to sampling occasions as well as with respect to the shape 
of the global course of learning. The use of spline functions (Wood, 2017) to mod-
el the global learning course allows flexible adjustments making it more convenient 
to fit real data compared to parametric alternatives. Smooth functions are especial-
ly useful to model short-term changes, for example, setbacks after school holidays 
or intervention effects.

3.  Smooth Growth and Linear Deviation Rasch Model

We assume that t = 0 indexes the first measurement occasion and that there are 
occasions t = 0, ..., T, not necessarily evenly spaced. We do not assume that all per-
sons are measured at the same occasions, reflecting a missing data situation that is 
common in longitudinal data. We index a pool of items by i = 1, ..., I and assume 
that each person responds to a (maybe empty) subset of items at a measurement 
occasion and this subset might or might not be identical for all persons j = 1, ..., J.

The SGLDRM is introduced now. Let Yjit be a dichotomous random variable 
that indicates whether at measurement time t person j answered item i either cor-
rectly (Yjit = 1) or not (Yjit = 0). Further assume that over the course of time a per-
son’s ability ϑjt can change while item difficulties βi stay invariant. As the proba-
bility of solving an item should increase with a person’s ability and decrease the 
more difficult an item is, the probability is assumed to increase monotonously with  
ϑjt − βi. The Rasch model assumes a logit-linear relationship:
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In our extension of the Rasch model, the latent person ability at time t is assumed 
to be composed of a latent global trend λ(t), in addition to a person-specific latent 
intercept δj and slope γj, such that
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time t person j answered item i either correctly (Yjit = 1) or not (Yjit = 0). Further

assume that over the course of time a person’s ability θjt can change while item difficulties
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. (1)

In our extension of the Rasch model the latent person ability at time t is assumed to be

composed of a latent global trend λ(t), in addition to a person-specific latent intercept δj
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and slope γj, such that

θjt = λ(t) + δj + γjt. (2)

Note that δj +γjt is a person-specific linear function in t that is interpreted as the deviation

of person j from the global trend. We assume that the function of global mean latent ability

on time, λ(t), is smooth, i.e., we rule out sudden jumps. Otherwise, the function has an

arbitrary shape which has to be estimated from the data and is not specified a priori. The

technical approach via spline functions is detailed below. Figure 1 illustrates the approach.
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Figure 1 . Illustration of the model: A smooth global course is modified by a linear

individual deviation (synthetic data for three students named Ernest, Esther and Erol).

Similar to many other IRT models, local stochastic independence is assumed:

Responses made by person j are independent conditional on person ability at time points t1

and t2 (where t1 = t2 is possible). Hence, conditional on item abilities at t1 and t2, the

answer to item i1 at t1 does not affect the answer for item i2 at t2 (where i1 = i2 is

possible), which can be expressed as

P(Yji1t1 = yji1t1 |θjt1 ,θjt2) = P(Yji1t1 = yji1t1 |Yji2t2 = yji2t2 ,θjt1 ,θjt2). (3)

Similarly, the probability of person j1 solving item i correctly does not depend on whether

person j2 �= j1 was able to solve item i, leading to an independence assumption for persons.

If the same item is used at two different time points, the model, as specified, ignores

potential local item dependence, i.e., a person’s chance to correctly answer at t2 is
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i1 = i2 is possible), which can be expressed as
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and t2 (where t1 = t2 is possible). Hence, conditional on item abilities at t1 and t2, the

answer to item i1 at t1 does not affect the answer for item i2 at t2 (where i1 = i2 is
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Similarly, the probability of person j1 solving item i correctly does not depend on whether

person j2 �= j1 was able to solve item i, leading to an independence assumption for persons.
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Similarly, the probability of person j1 solving item i correctly does not depend on 
whether person j2 ≠ j1 was able to solve item i, leading to an independence assump-
tion for persons.

If the same item is used at two different time points, the model, as specified, ig-
nores potential local item dependence, that is, a person’s chance to correctly an-
swer at t2 is conditionally independent on whether the item was solved at t1 or not. 
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This might be most plausible if the item index represents a whole family of items 
(see the sample application), or for domains like mental calculation, attention, or 
clerical speed, while the assumption is implausible for items requiring some sort 
of insight or factual knowledge. Our recommendation is hence to avoid reusing the 
very same items if the SGLDRM is to be applied.

To complete the model specification of the SGLDRM, a bivariate normal mar-
ginal distribution for the latent variables δ and γ is assumed:
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To complete the model specification of the SGLDRM, a bivariate normal marginal

distribution for the latent variables δ and γ is assumed:

(δ, γ)′ ∼ N2(0,Σ), (4)

where

Σ =



σ2
δ ρσδσγ

ρσδσγ σ2
γ


 (5)

is a not necessarily diagonal 2 × 2 covariance matrix. It is possible to constrain ρ = 0 for

ease of fitting the model, which might however be implausible in some contexts. The

individual latent variables (δj,γj)′ are independent copies of the bivariate random variable

(δ,γ)′.

While the interpretation of θjt and βi is familiar from the Rasch model, it is

important to note how to interpret the other parts of the SGLDRM: The global latent

growth curve λ(t) coincides with the latent ability of an average person with δj = γj = 0.

The parameter σ2
δ is the variance of latent ability at t = 0. The standard deviation σδ of

latent ability is on the familiar logit-scale and is hence easier to interpret. The larger σδ,

the larger the spread of ability at t = 0. If γj = 0, the person specific course of learning is

just shifted up or down by δj. Hence the larger σγ, which is the standard deviation of the

person specific slope of the linear deviation, the less likely it is for the individual

trajectories to be practically parallel to the global curve given by λ(t). Finally, ρ, the

correlation of δ and γ, is to be interpreted depending on its sign: If ρ is positive, persons

starting above the latent mean at t = 0 (δj > 0) have larger slopes γj on average than those

where

is a not necessarily diagonal 2 × 2 covariance matrix. It is possible to constrain ρ = 
0 for ease of fitting the model, which might however be implausible in some con-
texts. The individual latent variables (δj, γj)′ are independent copies of the bivari-
ate random variable (δ, γ)′.

While the interpretation of ϑjt and βi is familiar from the Rasch model, it is im-
portant to note how to interpret the other parts of the SGLDRM: The global latent 
growth curve λ(t) coincides with the latent ability of an average person with δj = γj 
= 0. The parameter σδ

2 is the variance of latent ability at t = 0. The standard devia-
tion σδ of latent ability is on the familiar logit scale and is hence easier to interpret. 
The larger σδ, the larger the spread of ability at t = 0. If γj = 0, the person-specif-
ic course of learning is just shifted up or down by δj. Hence, the larger σγ, which is 
the standard deviation of the person-specific slope of the linear deviation, the less 
likely it is for the individual trajectories to be practically parallel to the global curve 
given by λ(t). Finally, ρ, the correlation of δ and γ, is to be interpreted depending 
on its sign: If ρ is positive, persons starting above the latent mean at t = 0 (δj > 0) 
have larger slopes γj on average than those below the latent mean at t = 0 (“The 
rich get richer and the poor get poorer.”). If ρ is negative, persons starting above 
average (δj > 0) tend to have smaller slopes than average (γj < 0), implying that, on 
average, persons with low ability catch up (to some extent) and that the latent var-
iance might decrease as t increases.

3.1  The SGLDRM as a Generalized Additive Mixed Model

For purposes of parameter estimation, it is useful to understand the SGLDRM 
as a binomial generalized additive mixed model (binomial GAMM; Wood, 2017) 
with a logit link function, where λ(t) is a smooth function of the covariate time t. 
The latent intercept δ and slope γ are random effects from the GAMM perspective 



Gesa Brunn, Fritjof Freise, & Philipp Doebler

96 JERO, Vol. 14, No. 1 (2022)

and the item difficulties βi are treated as fixed effects. Some details on binomial 
GAMMs follow, so that the connection becomes apparent.

A binomial GAMM with a univariate smooth function s is of the general form 
(Wood, 2017)
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the learning process. Polynomials of high orders seem to offer a similar amount of

flexibility, but overfitting polynomials leads to implausible oscillating patterns, limiting the

ability to predict ability by interpolation. Instead, we use spline functions to approximate

the process. They are highly flexible, smooth and rather simple to use. Spline functions are

reviewed with some detail in the following subsection.

In the GAMM context, g is a differentiable link function with logit and probit being 
the most popular choices. The logit is chosen here, as this preserves the log-odds 
interpretation of many parameters familiar from Rasch models. On the right-hand 
side of the equation we have a model matrix of fixed effects X and the correspond-
ing parameter vector a. Here, only the item difficulties βi are fixed effects, but the 
GAMM perspective allows for straightforward inclusion of other fixed person or 
item effects.

The smooth component s(·) is included for flexible modeling of the effect of 
time on the learning process. Polynomials of high orders seem to offer a simi-
lar amount of flexibility, but overfitting polynomials leads to implausible oscillat-
ing patterns, limiting the ability to predict ability by interpolation. Instead, we use 
spline functions to approximate the process. They are highly flexible, smooth, and 
rather simple to use. Spline functions are reviewed with some detail in Subsection 
3.2.

The random person effects δj and γj for the linear deviations in the SGLDRM 
are represented by the vector of random effects b and the corresponding model 
matrix of random effects Z. By not treating them as fixed effects, the person-spe-
cific coefficients (δj, γj)′, j = 1, ..., J, are not estimated when fitting the model. From 
a technical point of view, the person parameters are nuisance parameters and by 
treating them has random effects, they do not have to be estimated. However, af-
ter model fitting, individual estimates can be obtained, which we detail below. By 
eliminating person parameters from the model, the model fit does not depend on 
the particular set of people, but applies to subjects with abilities from the same dis-
tribution.

3.2  Regression Splines

Regression spline functions are a composition of continuous functions joined to-
gether at so-called knots to fit a smooth function to a certain set of noisy data 
(Wood, 2017). Instead of determining the shape of the mean course of learning in 
advance, for example, by choosing a linear function or another polynomial of some 
degree, the use of spline functions provides a more flexible fit to the data points 
and therefore is presumably closer to the “true” course of development. The true 
course is, of course, unknown since it is a latent psychological construct. The exist-
ence of a smooth underlying function of the true course is an assumption.
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One issue in fitting a smooth function to data is to compromise between 
smoothness and fit. A class of splines that are commonly used as default in imple-
mentations are thin plate regression splines (Wood, 2003). They are based on the 
idea of minimizing the squared distance between spline and actual data, penalized 
by an additive term that gets larger the “wigglier” a spline gets, the so-called pe-
nalized residual sum of squares. A detailed illustration of spline functions can be 
found in Green and Silverman (1994).

When fitting a model with penalized regression splines, one has to choose the 
dimension of the basis that spans the space of spline functions. While a dimension 
which is too small can deteriorate a model’s fit, a higher dimensionality primari-
ly leads to a higher computational cost of the thin plate regression spline (Wood, 
2017). By choosing a basis with a sufficiently high dimension the fitted curve’s flex-
ibility is unrestricted, while overfitting (too much “wiggliness”) is prevented by de-
termining the penalty tuning parameter by a generalized cross-validation scheme. 
In other words, choosing a high dimension is not critical in packages with penal-
ized splines, and this is one of the reasons we recommend the packages gamm4 
(Wood & Scheipl, 2017) and mgcv (Wood, 2017) to fit the SGLDRM. Wood (2017, 
Chapter 5.9) provides an insight into the procedure of choosing and checking the 
basis dimension. A guideline given by Gu and Kim (2002) says that the basis di-
mension should be around 10n  where n is the number of observations. Additional 
information on the estimation procedure and suggestions for implementations can 
be found in the Appendix.

As soon as the model is fitted to a sufficiently large set of data based on a rep-
resentative set of subjects, the mean course of learning can, among other purposes, 
be used to compare the performances of newly tested individuals to it. This point is 
taken up in the next section.

4.  Deviations From the Mean Course of Learning

After a baseline assessment, individual person parameters can be estimated, and 
point estimates together with asymptotic (e.g., Lord, 1983) or exact confidence in-
tervals (Doebler et al., 2013; Klauer, 1991) can be used to assess initial ability. We 
now discuss a method for when longitudinal data is available: The aim is to com-
pare results of an individual participant and its change over time to the mean de-
velopment of the population. The SGLDRM composes a person’s ability at a certain 
point in time by a global trend and a person-specific intercept and slope. This com-
position can be used to develop statistical hypotheses regarding the divergence of 
a person’s ability from the global trend. Some approaches to hypothesis testing are 
presented below.

Note, that the inference in the following section is conditional given a fixed per-
son j and, hence, the individual random effects δj and γj can be considered to be 
fixed parameters. Additionally, λ(t) as well as item parameters βi, i = 1, ..., I, are 

2
9
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assumed to be known. Since we consider the deviation of an individual from the 
mean, all inference is done conditional on this person. The person index j is omit-
ted in this section since a particular person’s data is not necessarily part of the data 
set that is used to obtain the global course.

Assuming that the average course of learning λ(t) represents typical or healthy 
development, it is important to check whether an individual’s course of learning 
matches the mean course of learning relating to a certain population. If this was 
the case this person parameter, denoted by ϑt, would only consist of the global 
trend for all points in time t:
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With respect to the person specific linear deviation this yields the hypothesis

H0 : δ = γ = 0. (8)

If this null hypothesis is discarded the individual either would have a level of ability above

or below average (δj �= 0), or learn faster or slower than the average (γj �= 0) or a

combination of both. Figure 2 shows some theoretical learning courses.

To test the hypothesis in (8), we propose to employ a Likelihood Ratio test (LRT),

which compares the likelihood functions under H0 and the alternative H1. We first make

the likelihood L(δ,γ|y) explicit for a pair (δ,γ)′ given the data y of person j: Assume test
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administered to the individual at hand might not be the same at each point in time, so

denote the index sets containing the item indices by Atk , k = 1, . . . ,K. Hence one observes

yitk ∈ {0,1} for i ∈ Atk and k = 1, . . . ,K. Local independence assumptions then imply

L(δ,γ|y) =
K∏

k=1

∏

i∈Atk

exp(yitk(θtk – βi))
1 + exp(θtk – βi)

. (9)
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The ratio of the likelihoods is then given by

where numerator and denominator are the maximum of the likelihood under H0 
and the alternative, respectively. The value of the latter is the likelihood taken at 
the ML estimate, (δ̂       ,γ̂       )′, which is the conditional mode/BLUP.
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Figure 2 . Illustration of a smooth global trend (solid line) and three exemplary deviations

(broken lines).

The ratio of the likelihoods is then given by

r(y) = L(0,0|y)
L(δ̂,γ̂|y)

(10)

where numerator and denominator are the maximum of the likelihood under H0 and the

alternative, respectively. The value of the latter is the likelihood taken at the ML estimate,

(γ̂, δ̂)′, which is the conditional mode/BLUP.

The smaller the ratio r(y), the less likely it is that H0 is true given the observations

y. Under H0 the statistic W = –2 ln(r(y)) is asymptotically χ2
2 distributed (Casella &

Berger, 2002). In finite samples, especially when few items are used, the χ2-approximation

can fail. The finite sample performance can be improved by an empirical Bartlett
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Figure 2: Illustration of a Smooth Global Trend (Solid Line) and Three Exemplary 
Deviations (Broken Lines)
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alternative, respectively. The value of the latter is the likelihood taken at the ML estimate,
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y. Under H0 the statistic W = –2 ln(r(y)) is asymptotically χ2
2 distributed (Casella &

Berger, 2002). In finite samples, especially when few items are used, the χ2-approximation

can fail. The finite sample performance can be improved by an empirical Bartlett
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correction: Rather than comparing the test statistic W = –2 log(r(y)) to the corresponding

quantile of the χ2
2 distribution, it is first multiplied by an estimate of the factor 2/ E(W), so

that the corrected test statistic estimates (Pawitan, 2001)

W∗ = 2W
E(W). (11)

Variants of the LRT. There are two potentially useful variants of the LRT:

Assume an educator is interested to find out whether (i) a child manages to develop

parallel to the mean course (i.e., is the distance to the global mean course stable?), or (ii)

whether a child under- or overperforms given what growth is expected by the child’s initial

ability. Mathematically, the first variant (i) is straightforward: The course is parallel if,

and only if, γ = 0. So maximizing L(δ̂parallel, 0|y) as a function of δ̂parallel and comparing

to the ML-estimate yields the variant of the test statistic. Setting

rparallel(y) =
L(δ̂parallel, 0|y)

L(δ̂, γ̂|y)
(12)

we define Wparallel = –2 ln(rparallel(y)). Then Wparallel is approximately χ2
1-distributed

under H0 : γ = 0 and one can proceed as before. We mention in passing that a reference

value of γ �= 0 could also be tested.

For the second variant (ii) first note that when the bivariate normal distribution

assumption in the SGLDRM holds (with E(δ) = E(γ) = 0), the conditional expectation of

γ given δ is given by

E(γ|δ) = ρ
σγ
σδ
δ (13)

by standard results for the bivariate normal distribution. The parameters in this expression

are taken from (estimates) of the covariance matrix in Equation 5. The conditional

expectation reflects the best guess of γ given δ, and hence reflects the growth one would

expect given the initial performance. The second variant will hence be called the

conditional variant, and we set

rcond(y) = L(δ̂cond, E(γ|δ̂cond)|y)
L(δ̂, γ̂|y)

, (14)

4.1  Variants of the LRT

There are two potentially useful variants of the LRT: Assume an educator is in-
terested to find out whether (a) a child manages to develop parallel to the mean 
course (i.e., is the distance to the global mean course stable?), or (b) whether a 
child under- or overperforms given what growth is expected by the child’s initial 
ability. Mathematically, the first variant (a) is straightforward: The course is paral-
lel if, and only if, γ = 0. So maximizing L(δ̂ parallel, 0 | y) as a function of δ̂ parallel  
and comparing to the ML-estimate yields the variant of the test statistic. Setting

The smaller the ratio r(y), the less likely it is that H0 is true given the observa-
tions y. Under H0 the statistic W = −2 ln(r(y)) is asymptotically χ2-distributed 
(Casella & Berger, 2002). In finite samples, especially when few items are used, 
the χ2-approximation can fail. The finite sample performance can be improved 
by an empirical Bartlett correction: Rather than comparing the test statistic  
W = −2 log(r(y)) to the corresponding quantile of the χ2-distribution, it is first 
multiplied by an estimate of the factor 2/ E(W), so that the corrected test statistic 
estimates (Pawitan, 2001)

2
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we define Wparallel = −2 ln(rparallel(y)). Then Wparallel is approximately χ2-distributed 
under H0: γ = 0 and one can proceed as before. We mention in passing that a ref-
erence value of γ ≠ 0 could also be tested.

For the second variant (b) first note that when the bivariate normal distribution 
assumption in the SGLDRM holds (with E[δ] = E[γ] = 0), the conditional expecta-
tion of γ given δ is given by
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to the ML-estimate yields the variant of the test statistic. Setting

rparallel(y) =
L(δ̂parallel, 0|y)

L(δ̂, γ̂|y)
(12)

we define Wparallel = –2 ln(rparallel(y)). Then Wparallel is approximately χ2
1-distributed

under H0 : γ = 0 and one can proceed as before. We mention in passing that a reference

value of γ �= 0 could also be tested.

For the second variant (ii) first note that when the bivariate normal distribution

assumption in the SGLDRM holds (with E(δ) = E(γ) = 0), the conditional expectation of

γ given δ is given by

E(γ|δ) = ρ
σγ
σδ
δ (13)

by standard results for the bivariate normal distribution. The parameters in this expression

are taken from (estimates) of the covariance matrix in Equation 5. The conditional

expectation reflects the best guess of γ given δ, and hence reflects the growth one would

expect given the initial performance. The second variant will hence be called the

conditional variant, and we set

rcond(y) = L(δ̂cond, E(γ|δ̂cond)|y)
L(δ̂, γ̂|y)

, (14)

by standard results for the bivariate normal distribution. The parameters in this 
expression are taken from (estimates) of the covariance matrix in Equation 5. The 
conditional expectation reflects the best guess of γ given δ, and hence reflects the 
growth one would expect given the initial performance. The second variant will 
hence be called the conditional variant, and we set

and define Wcond = −2 ln(rcond(y)). As in the parallel case, Wcond is approximate-
ly χ2-distributed under H0: γ = E(γ | δ) and one can proceed as before. How-
ever, the null hypotheses for Wparallel and Wcond now contain more than one point.  
This means no empirical Bartlett correction can be implemented, since neither 
E(Wparallel | H0) nor E(Wcond | H0) are well defined.

4.2  Power of the Person-Level LRT and its Variants

In a simulation, we want to examine the performance of the proposed LRTs for 
some cases of individual deviation as well as the behavior under the null hypothe-
ses. We focus on the LRT for H0: δ = γ = 0, but provide some insight into the var-
iants.

4.2.1  Power of the LRT and Calibration Error

In a first step, assuming a nonlinear mean course of learning and certain values for 
Σ, the covariance matrix of the individual effects, a calibration sample is generat-
ed. To explore the frequency of rejection of the true null hypothesis (type I error), 

1

1
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the calibration data set is generated from Equations 1, 2, 4, and 5 with J subjects, 
I = 5 items, and T = 10 measurements per subject. The individual intercept and 
slope are set to be uncorrelated (thus ρ = 0). The different settings for Σ are given 
in Table 1. To additionally examine the LRT properties without a calibration error, 
comparisons made in setting N are based on the true parameters rather than esti-
mations made on the calibration data. Since we would like to use the spline func-
tions to their full capacity, we refrain from choosing a polynomial function as glob-
al learning course λ(t). Instead, we arbitrarily choose 15 numbers and arrange them 
in ascending and descending sequences. We interpolate this pseudo data with a 
spline function and use this spline function as λ(t). The data points as well as the 
spline are illustrated in Figure 3.

Table 1: Values of σδ and σγ for Simulated Data With ρ = 0 and Mean Vector 0 (see 
Equations 4 and 5). Values for βi, i = 1, ..., 5 are set to −1, − 0.5, 0, 0.5, 1 for all 
Calibration Sets (Including Setting N)

Calibration set σγ σδ J

A 0.2 1 100

B 0.2 1 2500

C 0.75 0 2500

No calibration error (N ) – – –

Figure 3: Arbitrary Global Course Used for the Generation of Simulation Data
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Figure 3 . Arbitrary global course used for the generation of simulation data. The numbers

used for interpolation are –2.15, –2.12, –1.94, –1.93, –1.44, –0.66, –0.64, –0.55, –0.47, –0.51,

–0.51, –0.55, –0.55, –0.51, –0.47.

bias in the fixed effects: A: –0.122, B: –0.005, C: –0.006). An increasing variability in

individual slopes seems to have no substantial impact on the estimation of λ.

Data points for new individuals are simulated by drawing correlated Bernoulli

responses with conditional probabilities shown in Equation 1 for fixed values of γ and δ. To

examine hypothesis test behavior under H0, a first data set is drawn with γ = δ = 0. The

LRT statistic, as presented in the previous section, is calculated by using the estimated

mean learning curve λ̂(t) of the calibration data set and individual ML estimates δ̂j and γ̂j.

This procedure is repeated 5,000 times. Figure 4 shows the percentage of test statistics

which are greater than the 95% quantile of the χ2
2 distribution. Under the null hypothesis

(see center panel), it shows a rejection frequency that is slightly higher than 5% for all of

the three calibration data sets (6.72%, 5.16%, 5.36% resp.) as well as the comparison to

the true parameters (5.10%). The significance level is exceeded. The Bartlett correction

improves the results slightly for all data sets (4.52%, 4.56%, 5.18% resp.) and setting N

(4.54%). Table 2 holds Bias, RMSE and the coverage of parameter estimations for the four

Note. The numbers used for interpolation are −2.15, −2.12, −1.94, −1.93, −1.44, −0.66, −0.64, −0.55, 
−0.47, −0.51, −0.51, −0.55, −0.55, −0.51, −0.47.

After fitting the model (Equation 6) to the simulated calibration data set an es-
timate (t) of the smooth course of learning results. The fitted global trends are 
shown in Figure 5. With only 100 virtual individuals from data set A the overall 
shape of the development is captured albeit smoother and with less precision than 
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with higher sample sizes (mean bias in the fixed effects: A: −0.122, B: −0.005, C: 
−0.006). An increasing variability in individual slopes seems to have no substantial 
impact on the estimation of λ.

Data points for new individuals are simulated by drawing correlated Bernoul-
li responses with conditional probabilities shown in Equation 1 for fixed values of 
γ and δ. To examine hypothesis test behavior under H0, a first data set is drawn 
with γ = δ = 0. The LRT statistic, as presented in the previous section, is calculat-
ed by using the estimated mean learning curve λ̂ (t) of the calibration data set and 
individual ML estimates δ̂ j and γ̂ j. This procedure is repeated 5000 times. Figure 4 
shows the percentage of test statistics which are greater than the 95% quantile of 
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Figure 4: Rejection Frequencies of LRT Test at Significance Level α = 5% for Data Sets A, 
B, and C and Different Types of Deviation

Note. Bartlett-corrected performances are asterisked.
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the χ2-distribution. Under the null hypothesis (see center panel), it shows a rejec-
tion frequency that is slightly higher than 5% for all of the three calibration data 
sets (6.72%, 5.16%, 5.36%, respectively) as well as the comparison to the true pa-
rameters (5.10%). The significance level is exceeded. The Bartlett correction im-
proves the results slightly for all data sets (4.52%, 4.56%, 5.18%, respectively) and 
setting N (4.54%). Table 2 holds bias, root mean squared error (RMSE), and the 
coverage of parameter estimations for the four simulation settings.SMOOTH GROWTH AND LINEAR DEVIATIONS RASCH MODEL 41
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Figure 5 . Average courses λ(t) fitted for data sets A, B and C respectively.
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Figure 6 . Frequency of application usage smoothed by central moving average with

window length 9 days; vacation periods for North Rhine-Westphalia are added to indicate

nationwide vacation periods.

Figure 5: Average Courses λ(t) Fitted for Data Sets A, B, and C, Respectively

To examine the behavior under H1, the values for δ and γ are varied systematical-
ly: The parameters take three different values respectively, one negative (δ = −1, γ 
= −0.2), one neutral (δ = γ = 0), and one positive (δ = 1, γ = 0.2). The test seems 
to find deviations more consistently if the deviations of both parameters are di-
rected the same way. For example, a deviation of a student whose course of learn-
ing is both shifted upwards and increases more rapidly than the global course, for 
example, δ = 1, γ = 0.2, is very likely to be detected. However, individuals with an 
above-average intercept and a below-average slope are detected only about 30% of 
the times.

The biases in δ and γ are large for some cases, most pronounced when δ = −1 
and γ = −0.2. The deeper reason are floor effects, that is, the test material is way 
too hard for the simulated persons. One can see the combination of δ = −1 and γ = 
−0.2 as a misfit of the item set and the person. As seen in Figure 3, the mean tra-
jectories start in the range of –1.2 to –0.9. A person with δ = −1 hence starts at an 
ability level of –2.2 to –1.9 and hence the chance to solve an item of average diffi-
culty is smaller than 13%. Over the course of the ten simulated measurement oc-
casions, the mean gain is up to 2 units, depending on the mean trajectory in Fig-
ure 3. Hence, at Time 10 a γ of –0.2 leads to a latent ability which cancels out the 
mean gain or is even a net ability decrease over time. As a consequence, the whole 
trajectory has to be estimated based on potentially many zero scores, so the max-
imization of the person likelihood in Equation 9 can yield extreme estimates of δ 
and γ. In other words, the substantial growth we simulate uncovers deficits of the 
procedure in pathological cases.
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Table 2: Rejection Rates of LRTs, Bias, Root Mean Squared Error and Coverage of 
Asymptotic 95% Confidence Intervals of Parameter Estimates Under Different 
Settings

Setting/ 
data set

δ γ Rej. rate Rej. rate
Bartlett

Bias δ Bias γ RMSE 
δ

RMSE 
γ

Cover-
age
δ

Cover-
age

γ
N –1.0 –0.2 0.999 0.998 –1.47 –5.79 18.81 17.46 0.96 1.00

0.0 –0.2 0.865 0.854 –0.46 –0.10 5.91 2.51 0.97 0.98
1.0 –0.2 0.315 0.297 –0.06 0.00 0.87 1.21 0.96 0.96

–1.0 0.0 0.598 0.588 –0.76 0.07 7.19 1.30 0.96 0.97
0.0 0.0 0.051 0.045 –0.18 0.02 1.05 0.15 0.96 0.96
1.0 0.0 0.794 0.788 –0.08 0.01 0.76 0.99 0.96 0.95

–1.0 0.2 0.309 0.290 –0.26 0.03 1.24 1.24 0.96 0.96
0.0 0.2 0.956 0.954 –0.18 0.03 0.93 0.27 0.96 0.96
1.0 0.2 1.000 1.000 –0.11 0.03 0.78 0.78 0.97 0.97

A –1.0 –0.2 0.997 0.994 –3.00 –5.81 29.22 17.86 0.93 0.99
0.0 –0.2 0.834 0.778 –0.23 –0.13 8.08 2.63 0.93 0.97
1.0 –0.2 0.376 0.315 0.25 –0.03 0.94 1.24 0.93 0.95

–1.0 0.0 0.540 0.438 –0.43 –0.01 7.72 1.99 0.93 0.95
0.0 0.0 0.067 0.045 0.14 –0.01 1.07 0.15 0.93 0.95
1.0 0.0 0.871 0.839 0.25 –0.02 0.80 1.03 0.92 0.94

–1.0 0.2 0.313 0.263 –0.00 0.01 1.27 1.22 0.94 0.94
0.0 0.2 0.971 0.959 0.13 -0.00 0.92 0.24 0.93 0.95
1.0 0.2 1.000 1.000 0.21 -0.00 0.83 0.82 0.93 0.95

B –1.0 –0.2 0.997 0.997 –2.68 –5.41 24.15 17.20 0.96 0.99
0.0 –0.2 0.846 0.833 –0.40 –0.20 4.73 3.42 0.97 0.98
1.0 –0.2 0.281 0.268 –0.14 0.01 0.87 1.19 0.97 0.96

–1.0 0.0 0.592 0.575 –0.61 0.03 3.62 1.73 0.97 0.97
0.0 0.0 0.052 0.046 –0.22 0.03 1.02 0.15 0.97 0.97
1.0 0.0 0.801 0.795 –0.12 0.02 0.77 0.99 0.96 0.95

–1.0 0.2 0.340 0.334 –0.32 0.05 1.24 1.26 0.97 0.97
0.0 0.2 0.962 0.959 –0.19 0.03 0.92 0.28 0.97 0.96
1.0 0.2 1.000 1.000 –0.18 0.04 0.84 0.77 0.96 0.96

C –1.0 –0.2 0.998 0.998 –2.60 –5.82 25.43 17.81 0.96 1.00
0.0 –0.2 0.871 0.869 –0.82 –0.15 10.31 3.41 0.97 0.98
1.0 –0.2 0.304 0.292 –0.13 0.01 0.88 1.20 0.96 0.96

–1.0 0.0 0.628 0.627 –0.67 0.01 6.01 2.07 0.96 0.97
0.0 0.0 0.054 0.052 –0.19 0.02 1.01 0.14 0.97 0.96
1.0 0.0 0.764 0.763 –0.14 0.02 0.77 0.99 0.96 0.96

–1.0 0.2 0.302 0.290 –0.29 0.03 1.29 1.25 0.96 0.96
0.0 0.2 0.949 0.948 –0.21 0.03 0.93 0.27 0.96 0.97
1.0 0.2 1.000 1.000 –0.17 0.04 0.84 0.78 0.96 0.96

Note. Rej. = rejection; RMSE = root mean squared error.



Smooth Growth and Linear Deviations Rasch Model

105JERO, Vol. 14, No. 1 (2022)

4.2.2  Behavior of Variants of the LRT

We compare the LRT with its variants in the setting with no calibration error (N). 
Recall, that the global growth curve covers a range of 2.5 logits and hence reflects 
extreme growth. We hence also employ the same curve multiplied with a factor of 
0.25, reflecting moderate global growth, and use the same parameter settings and 
procedure otherwise. For Wcond, we use ρ = 0.2, σδ = 1, and σγ = 0.2 to calculate 
E(γ | δ). For all tests the scenario δ = γ = 0 is contained in the null hypothesis, and 
for Wparallel, all scenarios with γ = 0 are consistent with H0. We determined the 
proportion of rejected null hypotheses for W, Wparallel, and Wcond in 5000 replica-
tions, and the results are presented in Table 3. Since the Bartlett correction is only 
applicable to W, we omit it in this simulation.

Table 3: Proportion of Rejected LRTs

True parameter LRT (variant)

δ γ λ W Wparallel Wcond

–1 –0.2 1.00 .994 .996 .999

0 –0.2 1.00 .757 .720 .795

1 –0.2 1.00 .305 .038 .055

–1 0.0 1.00 .617 .694 .702

0 0.0 1.00 .052 .035 .055

1 0.0 1.00 .793 .825 .872

–1 0.2 1.00 .237 .031 .063

0 0.2 1.00 .882 .819 .888

1 0.2 1.00 1.000 1.000 1.000

–1 –0.2 0.25 .999 1.000 1.000

0 –0.2 0.25 .847 .826 .829

1 –0.2 0.25 .391 .053 .056

–1 0.0 0.25 .791 .908 .875

0 0.0 0.25 .047 .048 .054

1 0.0 0.25 .852 .883 .910

–1 0.2 0.25 .367 .048 .043

0 0.2 0.25 .878 .778 .859

1 0.2 0.25 1.000 1.000 1.000

Note. 5000 replications. Cases with excessive rejections of H0 or low power in boldface.

The upper half of the fourth column of Table 3 is for the W LRT (both, γ and δ, are 
freely estimated under H1). This reproduces a portion of Table 2, with minor dis-
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crepancies in the third decimal place due to Monte Carlo errors, so we do not re-
peat the above interpretation. Generally speaking, the variants of the LRT are able 
to detect violations of the null hypothesis, but there are scenarios which have low 
power (especially when the global course and the individual course intersect, i.e., 
δ = 1, γ = −0.2 or δ = −1, γ = 0.2). In some scenarios, compatible with the null hy-
pothesis, Wparallel will create false positive test results (δ = 1 or δ = −1). When the 
growth curve is extreme, the recovery of the person parameters is biased, affecting 
in turn the LRT variants. The effect is less pronounced when the growth is less ex-
treme, but still observable (with 32% and 18% rejections when γ = 0 and δ = 1 or 
δ = −1, respectively). We recommend using the variants only when person param-
eter estimates can be assumed to be unbiased, severely limiting their applicability.

5.  Empirical Illustration: Dyscalculia

Data from Meister Cody von Talasia (CODY) is reanalyzed. CODY is an online test 
and training system that was developed to monitor the learning progress of chil-
dren with mathematical learning difficulties. More specifically, data from a numer-
acy test previously studied by Schwenk et al. (2017) is reanalyzed. The response ac-
curacy is the target criterion; the two alternatives, response speed and response 
efficiency (cf. Schwenk et al., 2017), are not considered here. We stress that we are 
not measuring numeracy in an all-encompassing sense, since response times are 
not considered here.

Basic arithmetic skills are assessed with addition and subtraction items in a 
number range between 0 and 20. For each type of calculation task the test taker 
has 90 seconds to answer as many items correctly as possible. The items are ran-
domly drawn from a pool of Nadd = 127 and Nsub = 143 calculations and are pre-
sented to the user one by one. The tests go along with corresponding training ses-
sions and are integrated into a motivational story. The data on hand was collected 
between January 2018 and June 2019 and comprises almost 300 000 individu-
al observations made in about 14 500 tests on 3500 children. The usage frequen-
cy over the years and potential setbacks due to vacations are pictured in Figure 6. 
In order to make the SGLDRM applicable to the data, we transformed the time 
stamps and clustered the items. One should note that there is a variety of possibil-
ities to transform and create the necessary variables and the following approach is 
taken for demonstration purposes.

Table 4 gives an idea of the longitudinal data set. Two time variables are part of 
the data set: a day variable giving the number of training sessions since the child’s 
first registration and the date of the assessment. We combine these two variables 
to create a quasi-continuous time variable. For each student tj = 0 indicates the 
time of their registration. We use day as a basis and add the time of day as a per-
centage. Students who are tested on their fifth day at 6 p.m. thus get a time value 
of tj = 4.75.
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 Note. Vacation periods for North Rhine-Westphalia are added to indicate nationwide vacation periods.

Table 4: General Structure of Dyscalculia Data

Index Subject Day Calculation Date Task type Correct

1 1 5 4 + 8 = 12 2018-05-13 10:03:08 add 0

2 1 5 9 + 9 = 18 2018-05-13 10:03:19 add 0

3 1 5 11 – 1 = 10 2018-05-13 10:03:30 sub 1

4 2 5 2 + 3 = 5 2018-02-14 15:27:57 add 1

5 2 5 1 + 1 = 2 2018-02-14 15:28:06 add 1

6 2 5 19 – 7 = 12 2018-02-14 15:28:13 sub 0

7 1 10 4 + 8 = 12 2018-05-20 16:05:50 add 1

8 1 10 9 + 9 = 18 2018-05-20 16:06:08 add 0

Note. add = addition; sub = subtraction.

There are 270 different calculation tasks in the item pool which would make their 
estimation computationally intense and consume much of the information that we 
would rather use to compute the overall course of learning. Instead we categorize 
the addition and subtraction items into three different groups, respectively: calcu-
lations within 10 (add ↓ 10, sub ↓ 10), between 10 and 20 (add ↑ 10, sub ↑ 10), and 
those that require passing the 10 (add ↕ 10, sub ↕ 10). In that way, there are only 

Figure 6: Frequency of Application Usage Smoothed by Central Moving Average With 
Window Length 9 Days
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Figure 5 . Average courses λ(t) fitted for data sets A, B and C respectively.
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Figure 6 . Frequency of application usage smoothed by central moving average with

window length 9 days; vacation periods for North Rhine-Westphalia are added to indicate

nationwide vacation periods.
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six item parameters to be estimated while we are still able to assess the difficulties 
of the item clusters.

For model fitting we only use observations from children tested on days 5, 10, 
15, ..., as this time lag is recommended by the CODY authors, and who participated 
in at least six assessments. Apart from that, tests with “perfect” scores are excluded 
to maintain estimability and interpretation. Thus, we consciously use only 37% of 
the total observations for parameter estimation, so that the mean curve represents 
an average child requiring training and adhering to CODY training for at least 30 
training days. Figure 7 shows the estimated mean curve that corresponds to λ(t) of 
the SGLDRM. To have some kind of guideline for individual performance, the first 
and third quantile of the sample parameters are added to the curve. Table 5 shows 
the estimated item parameters. As anticipated, estimates suggest that addition and 
subtraction tasks in the number range from 0 to 10 are the easiest. Addition tasks 
seem to be easier than the according subtraction tasks.
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Figure 7 . Estimated global course of

learning for the dyscalculia example, with

dashed lines at the first and third sample

quartiles of subject parameters δ and γ.

0.70

0.75

0.80

10 20 30 40

Practice Day
Fr

eq
ue

nc
y 

of
 

C
co

rre
ct

An
sw

er
s

Figure 8 . Mean of correctly answered items

per day of all given observations (�) and

perfect scores omitted (�) respectively;

bars marking ± one standard error of the

latter.

5 10 15 20 25 30 35 40

−1
0

1
2

Practice Day t

G
lo

ba
l L

ea
rn

in
g
C

ou
rs

e
λ(

t)

Figure 9 . Individual learning courses of

Student A (red), Student B (green) and

Student C (blue) as estimated in the

SGLDRM framework.

0.6

0.8

1.0

10 20 30 40

Practice Day

Fr
eq

ue
nc

y 
of

 
C

co
rre

ct
An

sw
er

s

Figure 10 . Individual scores of Student A

(red), Student B (green) and Student C

(blue) in comparison to population average

scores (black).

Figure 7: Estimated Global Course of Learning for the Dyscalculia Example

Note. Dashed lines at the first and third sample quartiles of subject parameters δ and γ.

Table 5: Estimations of Item Parameters for the Dyscalculia Example for the SGLDRM

Item parameter βadd↕10 βadd↑10 βadd↓10 βsub↕10 βsub↑10 βsub↓10

estimation 1.25 1.53 2.69 0.61 0.99 2.12

Note. Increasing values indicate decreasing difficulty.
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We give examples of individual analyses now. Three students are chosen in order 
to demonstrate different types of developmental patterns. We randomly choose one 
student each with the characteristics (a) average learner starting at average lev-
el, (b) extraordinary learner, and (c) extraordinary initial level. Those three pseu-
do groups are certainly no educated classifications but are provided for demonstra-
tion. Student A seems to have an average performance (see Figure 9) with δA = 
0.534 and γA = −0.017. Their likelihood ratio test statistic (without Bartlett cor-
rection) of WA = 1.095 is below the quantile χ2

2,0.95 = 5.991, thus the Hypothesis 
H0: δA = γA = 0 cannot be rejected with given significance level α = 5%. The non- 
parametric analysis (see Figure 10) gives the impression of an unsteady perfor-
mance by Student A oscillating around the average. Both methods show Student B 
starting at an average level of performance which soon drops rapidly (δB = 0.754, 
γB = −0.085). The likelihood ratio test indicates this individual’s learning curve to 
significantly differ from the average course λ(t) with WB = 18.020. The third sub-
ject, Student C, also shows a significant finding with a test statistic of WC = 43.865. 
However, in contrast to Student B it is due to their particularly good initial level of 
performance with estimated parameters δC = 1.095 and γC = 0.000.

Additionally, we examine overall learning development by simply determining the 
averages of correct responses per day (see Figure 8). The development is similar to 
the curve that was estimated for the SGLDRM. Apart from a more defined increase 
the major difference is a decrease in performance from day 30 to day 40 of the 
mean when perfect scores are omitted (■), thereby excluding an increasing amount 
of correct responses as can be seen by comparing the development based on all ob-
servations (♦) and those without perfect scores (■). The non-parametric method 
gives each calculation the same weight in the estimation process, which might lead 
to discrepancies between the methods especially when only few items are respond-
ed to in each test run.SMOOTH GROWTH AND LINEAR DEVIATIONS RASCH MODEL 44
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It is noteworthy that given analyses do not take any speed component into account. 
The number of completed items per test run are not used to estimate the students’ 
abilities. This might be a great loss of information as can be seen in this example. 
While Student C works on 27.83 items on average with the overall mean of giv-
en data being 20.16 (SD = 5.65) their two fellow students do not do as well with 
13.43 (Student A) and 9.33 (Student B) items per test. Although the performance 
of Student A might be average in regard to calculating accuracy, there might be a 
lack of speed in the performance. One naive method to deal with this inconven-
ience is to treat each item of the item pool that was not worked on in a test run as 
an incorrect answer. In that way it is equally valued to give an incorrect response 
or to not have the time to work on an item at all. However, this leads to different 
kinds of issues especially when working with great amounts of items and compar-
atively low sample sizes. To begin with, the computational costs rise up drastical-
ly, as the number of observations increases. Furthermore, estimated item parame-
ters are not interpretable in practice as it is not clear if an incorrect response to an 
item was made due to high difficulty or if the item simply was not drawn into the 
test sample.
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6.  Discussion

The SGLDRM is a model for longitudinal data on the item level. We have demon-
strated that a smooth global course of learning (CoL) can be estimated, which can 
often be interpreted as a reference CoL. In the SGLDRM, deviations from the glob-
al CoL are linear, so that the resulting person-level intercept and slope parameters 
can be estimated from two or more repeated observations. Potential applications 
include situations with a moderate number of repeated measurements per person. 
The measurement occasions can be unequally spaced. Also, items might be part of 
a larger pool of items. Regardless of which items are used, person-level deviations 
can be tested, allowing to detect deviations from the global course.

6.1  Relationship to Existing Approaches

Andersen’s (1985) model expands the Rasch (1960) model by a time-dependent 
person parameter ϑjt for person j at measurement occasion t. Similarly, Embret-
son (1991) assumes a baseline person ability at the first measurement occasion to 
which the gain in ability is added at each occasion, so that the ability of person j at 

time t can be written as 
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give an incorrect response or to not have the time to work on an item at all. However, this

leads to different kinds of issues especially when working with great amounts of items and

comparatively low sample sizes. To begin with, the computational costs rise up drastically,

as the number of observations increases. Furthermore estimated item parameters are not

interpretable in practice as it is not clear if an incorrect response to an item was made due

to high difficulty or if the item simply was not drawn into the test sample.

Discussion

The Smooth Growth Linear Deviation Rasch Model (SGLDRM) is a model for

longitudinal data on the item level. We have demonstrated that a smooth global course of

learning (CoL) can be estimated, which can often be interpreted as a reference CoL. In the

SGLDRM deviations from the global CoL are linear, so that the resulting person-level

intercept and slope parameters can be estimated from two or more repeated observations.

Potential applications include situations with a moderate number of repeated

measurements per person. The measurement occasions can be unequally spaced. Also,

items might be part of a larger pool of items. Regardless of which items are used, person

level deviations can be tested, allowing to detect deviations from the global course.

Relationship to existing approaches

Andersen’s (1985) model expands the Rasch (1960) model by a time-dependent

person parameter θjt for person j at measurement occasion t. Similarly Embretson (1991)

assumes a baseline person ability at the first measurement occasion to which the gain in

ability is added at each occasion, so that the ability of person j at time t can be written as
t∑

m=1
θjm. In the Linear Logistic Test Model (LLTM; Fischer, 1973) change is modeled in

regard to items instead of subjects. It is assumed that the difficulty of an item is composed

of different basic (cognitive) operations that are needed in order to solve an item. Change

over measurement occasions is analyzed by parameterizing items with a component that

indicates learning effects, that is the item difficulty changes due to experiences that were

. In the linear logistic test model (LLTM; Fisch-
er, 1973) change is modeled in regard to items instead of subjects. It is assumed 
that the difficulty of an item is composed of different basic (cognitive) operations 
that are needed in order to solve an item. Change over measurement occasions is 
analyzed by parameterizing items with a component that indicates learning effects, 
that is the item difficulty changes due to experiences that were made on items be-
fore. The linear logistic model with relaxed assumptions (LLRA; Fischer, 1976) ad-
ditionally allows for item-specific person abilities.

In a more recent approach, Hecht et al. (2019) use a generalized linear mixed 
model (GLMM) framework for their continuous-time Rasch model for dichotomous 
responses similar to the present approach. GLMMs are a special case of GAMMs 
with the smooth function being a linear function. The authors treat item effects 
as fixed and person effects as random, however the relation and development of 
the person ability is motivated and implemented differently. The person ability 
of person j at (discrete) time t is modeled as an autoregressive process of order 
1 (AR[1]), with an underlying continuous time model. This underlying model ac-
counts for global intercept and slope which can be translated to our model by set-
ting the global trend λ(t) as a degree 1 polynomial. Hecht et al. (2019) consider a 
person-specific intercept, however no person-specific slope. This can be interpreted 
as individual developments running parallel to the average development.

The bivariate normal random effect in the SGLDRM implies that the variance of 
latent ability at time t is given by an expression quadratic in t. This implies that a 
norm based purely on the SGLDRM might misestimate latent variance, even if the 
spline correctly estimates the latent mean curve. If norms are required and sample 
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size is sufficient, semiparametric continuous norming provides accurate recovery of 
latent variance in simulations (Lenhard et al., 2019).

In their generalized explanatory longitudinal item response model Cho et al. 
(2013) include the possibility to subdivide items and subjects into groups and 
estimate the corresponding averages for discrete time points. The authors use a 
GLMM framework with a logit link function to fit the model. With only one item 
group and one subject group the model consists of three subject-based and two 
item-based components. Person ability is composed of an overall intercept, an av-
erage ability for each time point, and a person-specific ability per time point in 
which the latter is modeled as a random effect. The item component consists of a 
fixed average and item-specific deviations from this average which are again tak-
en as random effects. Similar to Fischer’s models, the assumption of unidimension-
al items is relaxed. In order to solve an item, multiple cognitive skills are assumed 
to be required, differing among the items or rather item groups. This approach can 
be added to the SGLDRM. Fixed item group effects were technically implemented 
in the context of the dyscalculia example with six item clusters. Additional random 
item effects would have accounted for item-specific deviations.

6.2  Recommendations, Limitations and Potential Extensions

6.2.1  Item Overlap

One limitation of the fitting process is that item sets administered at different oc-
casions need to overlap. Hence, designs with disjoint tests for each measurement 
occasion are not suitable for the SGLDRM, at least not without additional (equali-
ty) constraints on item parameters. Random sampling of items from a larger pool 
typically provides enough overlap. One benefit of this model is the possibility to 
compare student abilities and CoLs even when students worked on disjoint sets of 
items. An assumption of the SGLDRM is that item difficulty is invariant over time. 
Situations where difficulty drifts, say due to an intervention or schooling as usual, 
are not contained in the current approach. We recommend testing the item param-
eter invariance (e.g., Millsap, 2010).

Note, that the conditional independence assumption means that beyond cur-
rent ability, no other factors govern test behavior. Especially, repeated measure-
ment with the same items has to proceed with ample time between measurement 
occasions so that memory effects do not violate conditional independence. Items 
need to be drawn without replacement at the same measurement occasion to rule 
out local item dependence.
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6.2.2  Time and Other Influences

The SGLDRM can index measurement occasions with fine granularity, that is, time 
can be continuous in the model. In the sample application to CODY data, a time 
of zero indicated the beginning of a training, regardless of actual date. As a con-
sequence, two children in the same grade, say one starting the training in August, 
and one half a year later, start with different amounts of schooling. This implies 
that person-level random intercept and slope are also influenced by the schooling 
and should hence be interpreted with some caution. Especially the random inter-
cept is a baseline competence at the start of the training here. In another applica-
tion, time zero could represent the beginning of the school year. Alternatively, an 
additional (smooth) term could be added to the model, representing the amount 
of schooling received, potentially also for the slope. Given enough variation in the 
start time of the training, the two effects can be disentangled.

Note, that the conditional independence assumption means that beyond cur-
rent ability, no other factors govern test behavior. Especially, repeated measure-
ment with the same items has to proceed with ample time between measurement 
occasions so that memory effects do not violate conditional independence. Items 
need to be drawn without replacement at the same measurement occasion to rule 
out local item dependence.

In a correctly specified SGLDRM, which includes a correct specification of the 
spline and the random effects, all model parameters are consistently estimated. 
The larger the sample, the higher the precision of the estimation of the true glob-
al course of learning. When the random effects structure is misspecified, the mod-
el parameters still converge with growing sample size, but approach the value min-
imizing the Kullback-Leibler information (Heagerty & Kurland, 2001). In other 
words, the random effects specification, that is, the “linear deviation” part of the 
SGLDRM, needs to be checked. The random effects need to be modified if neces-
sary, for example, by adding a non-smooth ability jump or drop, say after a sum-
mer break.

Assuming many measurement occasions per person, the SGLDRM can be ex-
tended to allow for more complex deviations from the global course: Introducing 
latent residuals, that is, ϑjt = λ(t) + δj + γjt + ζjt for stochastically independent ζjt, 
helps to study whether linear deviations are appropriate. The variance of the resid-
uals, as well as their (mean) direction are informative. Quadratic or higher order 
polynomial terms could be added (or even person-level splines for the deviations). 
We caution that naive model checking of an SGLDRM’s deviance residuals could be 
misleading, since binary data leads to clustered deviance residuals.

In the context of the dynamic measurement model (DMM) framework (Dumas 
& McNeish, 2017), trajectories are seen as nested within students who are nest-
ed within schools (Dumas et al., 2020). The GAMM framework is flexible enough 
to incorporate random effects for the school level with a specification parallel to 
that of Dumas et al. (2020). Similarly, also exponential growth curves which were 
found to be appropriate for a large data set of math development (Dumas et al., 
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2020) are an alternative to linear deviations. Such extensions are beyond the scope 
of the current work, as they require a study of model identification, the parametri-
zation of the deviations needs to be interpretable to be useful beyond graphical in-
spection. As dynamic IRT models are actively researched (Dumas et al., 2020), 
future work should also aim to include local item dependence due to repeated ad-
ministration of the very same item.

6.2.3  Interpreting Correlations of Time Series

Correlations of time series are often positive if a global trend underlies all series. 
This has been frequently observed in the domain of macroeconomic time series 
(e.g., Gilbert & Meijer, 2005). In the context of educational time series, a positive 
global CoL and a naive calculation of correlations might suggest similarity of CoLs. 
Especially when (mean) time series are used to compare two or more groups, pos-
itive correlations might be spurious results of a global trend and hence potential-
ly misleading.

The person-level deviations from the global CoL in the SGLDRM do not have 
this problem. They are measures of individual differences in CoL free from the spu-
rious correlations. Once the model is calibrated, the CoL of new persons might be 
tracked. Then person-level slopes from the SGLDRM might be an indicator of in-
tervention effects, even in single case research designs. Similarly, group compari-
sons based on group-specific deviations from the global CoL are a potential mod-
el extension addressing the issue. For this, a group mean CoL needs to be added to 
the model equation, represented, say, by a linear function in time.

6.2.4  Null and Perfect Scores

Maximum likelihood (ML) estimation of person ability is often not recommended, 
since perfect scores or null scores are a problem for the method. Here, however, it 
is unlikely that a person would have perfect or null scores at all measurement occa-
sions. We recommend to remove persons with all null or all perfect scores from the 
data set. In both cases, the test at hand is inappropriate to track the CoL.

In case of very short assessments and very few measurement occasions, perfect 
and null scores might appear though the test is appropriate. The analyst might pre-
fer a Bayesian strategy instead, for example, employ maximum a posteriori (MAP) 
or expected a posteriori (EAP) estimation of the two deviation factors. Note, that 
the likelihood ratio test breaks down, as it requires ML estimates. Alternatives for 
this situation include Bayes factors (Berger & Delampady, 1987).
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6.2.5  Person-Level LRT Power

Our simulation results show that statistical power to detect deviations from the 
global course is low if the individual and global course intersect. Being able to 
identify students starting above average and falling behind is important in applica-
tions, but time spent testing could be less valuable than regular schooling. Howev-
er, longer baseline assessments are practically feasible in many contexts and reduce 
uncertainty in the intercept. This in turn improves slope estimation (in analogy to 
simple linear regression; Atkinson & Donev, 1992, p. 38ff.) and increases power of 
the LRT.

6.2.6  Interpretation in Application

Due to the lack of empirical values when it comes to putting the SGLDRM into 
practice there is no ideal guideline for teachers to interpret the outcomes yet. How-
ever, well-thought-out guidelines are essential in order for diagnostics to be inter-
preted correctly by non-experts (cf. Zeuch et al., 2017). There are roughly three 
ways to present SGLDRM results: The global trend as well as the linear deviation 
can be presented graphically, facilitating a visual assessment of a student’s as well 
as the general development. Apart from that, the SGLDRM gives three numeri-
cal scores per student for interpretation and diagnosis – an intercept, a slope, and 
whether or not the deviations from the global curve are (statistically) significant. In 
terms of the decision and judgment inferences of Hopster-den Otter et al. (2019), 
it would be important to provide guidelines for interpreting each outcome correct-
ly. For better accessibility the parameter values could further be simplified by color 
schemes, graphical methods, and written explanations. However, one should al-
ways keep in mind, that a test performance should be interpreted in relation to 
other student performances and the teacher’s assessments in order to meet the 
generalization inference (Hopster-den Otter et al., 2019). When implemented and 
communicated properly the SGDLRM offers valuable information on student de-
velopment and can support teachers in educational diagnostics.
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Appendix

1. Estimation Procedure

When using the statistical software R (R Core Team, 2020) to fit a GAMM, there 
are several functions to choose from, mgcv (Wood, 2017) and gamm4 (Wood & 
Scheipl, 2017) being two packages to provide them. As mentioned in the main text 
thin plate regression splines are used as default by all of the functions. The gamm4 
routines use the ML (maximum likelihood) method for parameter estimation in the 
case of a binomial family and logit as link function. A Laplace approximation to the 
(log-)likelihood is employed (Breslow & Clayton, 1993) and is maximized by bound 
optimization by quadratic approximation (BOBYQA) by default – a derivative free 
numerical optimization algorithm that iteratively minimizes a function by making 
use of quadratic models (Powell, 2009). The gamm routine of the mgcv package 
finds (approximate) ML estimators iteratively by penalized quasi likelihood (PQL) 
estimation. PQL estimation leads to asymptotic normality and efficiency of param-
eters estimates, including the spline (Yoshida & Naito, 2014).

While older simulation studies (Binder & Tutz, 2008) and current complex ap-
plications (Cho, Brown-Schmidt et al., 2022; Cho, Preacher et al., 2022) of GAMMs 
show that current estimation algorithms perform well when ample binary data is 
available, we have not investigated what the lowest feasible sample size for the 
SGLDRM is. We expect that it is hard to give general recommendations, as perfor-
mance will depend on factors like number of items, number of measurement occa-
sions, as well as distributions of latent variables and item difficulties. In case the 
SGLDRM is to be employed for data of less than 1000 individuals, we recommend 
targeted parameter recovery simulations to check for bias and RMSE of structural 
model parameters.

2. Latent Variance

While the model for the latent ability mean is very flexible, the time-specific latent 
variance is constrained by the model specification. One implication of the linear 
growth is that the variance of the person parameters will increase with time when 
the variance of the slopes is substantial: The following formula can be interpreted 
as indicating that the individual deviations from the global course spread the abili-
ty spectrum, though a negative correlation of the slopes and intercepts might delay 
this effect or reverse it initially when observation time is limited. More specifical-
ly, let ϑt denote a random variable for the marginal distribution of ability at time 
t, then
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Hence, depending on the entries of Σ, the variance of ϑt can increase or decrease 
with t, but is quadratic in t. Similarly, covariances are highly structured. The fol-
lowing model-implied formula for the SGLDRM’s latent covariances can be used 
for model checking by calculating the covariance for two time points with the help 
of a different model, say a bivariate Rasch model. For two time points t1 and t2 the 
covariance of the latent variables is given by
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