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Lighting the wick in the candle of learning: generating a

prediction stimulates curiosity

1

Garvin Brod®"? and Jasmin Breitwieser’

Curiosity stimulates learning. We tested whether curiosity itself can be stimulated—not by extrinsic rewards but by an intrinsic
desire to know whether a prediction holds true. Participants performed a numerical-facts learning task in which they had to
generate either a prediction or an example before rating their curiosity and seeing the correct answer. More facts received high-
curiosity ratings in the prediction condition, which indicates that generating predictions stimulated curiosity. In turn, high curiosity,
compared with low curiosity, was associated with better memory for the correct answer. Concurrent pupillary data revealed that
higher curiosity was associated with larger pupil dilation during anticipation of the correct answer. Pupil dilation was further
enhanced when participants generated a prediction rather than an example, both during anticipation of the correct answer and in
response to seeing it. These results suggest that generating a prediction stimulates curiosity by increasing the relevance of the

knowledge gap.

npj Science of Learning (2019)4:17 ; https://doi.org/10.1038/541539-019-0056-y

INTRODUCTION

“Curiosity is the wick in the candle of learning.” This well-known
quote by William Arthur Ward' deftly depicts curiosity as a driving
force for learning, akin to a wick that determines how and for how
long a candle burns. Curiosity, also called epistemic curiosity in the
context of knowledge acquisition, can be broadly defined as the
desire to know or learn something in the absence of extrinsic
rewards (for more in-depth discussions about defining curiosity,
see refs. 2. Although psychologists have been interested in the
psychological and biological mechanisms that give rise to curiosity
for a long time® (for an overview, see ref. ®), only fairly recently has
it been demonstrated that greater curiosity is indeed associated
with better learning.

A number of studies have shown that facts about which
participants have indicated they have high curiosity are better
remembered than facts about which participants have indicated
they have low curiosity.””'" Studies using pupillometry and
functional magnetic resonance imaging (fMRI) to investigate this
association have suggested neural mechanisms by which curiosity
promotes learning. Kang et al."" demonstrated that curiosity is
accompanied by a dilation of the pupil, a marker for the release of
the neurotransmitter noradrenaline in the brainstem’s locus
coeruleus.'? The release of noradrenaline leads to an upregulation
of the sensitivity of cortical processing units, thus facilitating
learning.”® In addition, fMRI studies indicate that activation of
brain regions involved in successful memory encoding and reward
anticipation is enhanced when curiosity is high.”'"'*® |n
summary, research suggests that curiosity enhances learning by
upregulating neural processing, particularly in brain regions
involved in successful memory encoding.

Can curiosity be stimulated? In early work on this topic, Berlyne®
speculated that when a learner is asked a question that he or she
cannot answer, this should result in curiosity and, hence, arousal.

When the correct answer is revealed, the resulting reduction of
arousal should lead to better learning. He suggested that new
information should therefore be presented to learners in the form
of questions for which the learners have to try to predict the
answers. These notions are consistent with the prominent
information-gap proposal,® according to which learners become
curious when their attention becomes focused on a gap in their
knowledge. Loewenstein® also argued that guessing with feedback
stimulates curiosity because it increases the salience of the
knowledge gap. In line with these ideas, a number of studies
have demonstrated that guessing with feedback promotes
learning.'”?° These studies did not assess curiosity, however, so
it is unclear whether the observed benefit arose because of
enhanced curiosity or even whether curiosity was enhanced at all.

Predicting an answer before being told the correct one could
benefit learning for reasons other than enhanced curiosity (for a
detailed discussion, see ref. 2'). First, to generate a prediction,
learners have to retrieve prior knowledge and connect it to the
new information being learned, which fosters meaningful learn-
ing.?? Second, when learners generate a prediction, they are first
presented with a problem. Information presented as a problem is
more likely to be used later on for solving similar problems than is
information presented in the form of simple facts.>* Third, the
pupillary surprise reaction to expectancy-violating information is
enhanced when learners make a prediction beforehand, which
also boosts their memory.?' In conclusion, initial evidence
suggests that generating predictions is an effective instructional
method that promotes learning. It is unclear, however, whether
generating predictions derives part of its effectiveness from
stimulating curiosity.

In the current study, we tested whether generating a prediction
before seeing the correct answer to a question stimulates curiosity
for numerical trivia facts. The prediction condition was compared
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with a closely matched control condition in which participants had
to generate a relevant example before seeing the answer.
Generating examples is also an effective-learning strategy that
entails retrieving prior knowledge; in addition, it fosters deep
encoding of new information.?* We hypothesized that more facts
would receive high-curiosity ratings in the prediction condition
than in the control condition, and that higher curiosity would be
associated with better memory for the facts. We further tested
whether the pupil dilation response was a sensitive marker of the
buildup and relief of curiosity and whether it was amplified in the
prediction condition.

RESULTS

Behavioral data

As we hypothesized, more facts received high-curiosity ratings in
the prediction condition (M =55.55 SD=14.36) than in the
example condition (M =46.43 and SD = 15.96), t(28) =1.78, p =
0.043, and d =0.330 (Fig. 1a). Similarly, absolute curiosity ratings
were significantly higher in the prediction condition (5.57 +1.53)
than in the example condition (5.13 + 1.31), t(28) = 2.21, p =0.018,
and d = 0.411. Also as we expected, high-curiosity facts (M = 61.95
and SD = 17.63) were better remembered than low-curiosity facts
(M=58.21, SD=16.64), t(28) =1.76, p=0.044, and d=0.327. It
took participants longer to generate a prediction (6.61+2.215)
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Fig. 1 Generating a prediction enhances curiosity. a More facts
received high-curiosity ratings in the prediction condition than in
the example condition. Error bars represent within-subject standard
error. b The average pupillary response during the anticipation
phase was greater in the prediction condition than in the example
condition. The average percentage change in pupil diameter relative
to the baseline (light gray area) was calculated for the time interval
from 1.5 to 4s after the onset of the anticipation phase (dark
gray area)
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than to generate an example (5.51 +1.495s), t(28) = 3.63, and p =
0.001. Memory performance did not differ significantly between
the two conditions, however (prediction: M=60.42 and SD =
15.81; example: M = 59.52, SD = 16.78), t(28) = 0.41, p = 0.682, and
d=0.077. We also explored whether the effect of curiosity on
memory performance was qualified by an interaction between
curiosity and condition. A within-subjects ANOVA revealed no
interaction, F(1, 28) =0.70, p = 0.411, and n, = 0.024.

Table 1 shows the results for the questionnaire data. In short,
participants’ ratings were in accordance with their performance in
that they thought they had been more curious in the prediction
condition than in the example condition, t(28) =-3.62 and p =
0.001, but they were undecided about in which condition they
had learned more, t(28)=-1.32 and p=0.199. In addition,
participants reported that they had more often connected the
facts with prior knowledge in the example condition, t(28) = 3.08
and p=0.005, but that they thought more often about their
predictions than about their examples during the memory test, t
(28) =2.48 and p=0.019.

Pupillary data

We first examined the pupillary response during the anticipation
phase, before participants saw the correct answer, which is when
curiosity should have been maximal. As the pupillary time series in
Fig. 1b shows, the average pupillary response during the
anticipation phase was greater in the prediction condition than
in the example condition, #(28) =2.24, p=0.016, and d =0.417.
We also tested whether the pupillary response during the
anticipation phase was modulated by curiosity (Fig. 2a) and found
that high-curiosity facts induced greater pupil dilation than low-
curiosity facts in the prediction condition, t(28) = 1.93, p =0.032,
and d=0.357. This effect was marginally significant in the
example condition as well, t(28) = 1.66, p = 0.054, and d = 0.308.

In addition to performing these preregistered analyses, we
explored the pupillary response to seeing the correct answer as a
proxy for surprise (see ref. 2') and whether it is modulated by
curiosity (Fig. 2b). A within-subjects ANOVA revealed a main effect
of condition, F(1, 28)=24.18, p<0.001, and n,=0.463; pupil
dilation was greater in the prediction condition than in the
example condition, indicating that generating a prediction
promotes surprise. There was no main effect of curiosity, F(1,

Table 1. Results for the questionnaire Items

Mean Median SD
In which condition were you more curious?? 241 2 1.62
In which condition did you learn more?® 314 3 1.48
Prediction condition
Did you connect the facts to your prior 369 4 0.89
knowledge during Iearning?b
Did you compare the correct value with your 438 5 0.86
predictions?®
Did you think of your predictions during the  4.14 4 0.64

memory test?®
Example condition

Did you connect the facts to your prior 414 4 0.69
knowledge during learning?®

Did you connect the results with your 324 3 0.99
examples?®

Did you think of your examples during the 352 4 1.38

memory test?®

“Responses to these questions were on a scale from 1, clearly prediction, to
6, clearly example
bResponses to these questions were on a scale from 1, never, to 5, always
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Fig. 2 Pupil dilations as a measure of curiosity and surprise. a During
anticipation of the answer, high-curiosity facts induced greater pupil
dilation than low-curiosity facts. b In response to seeing the answer,
pupil dilation was greater in the prediction condition than in the
example condition, indicating that generating a prediction promotes
surprise, but there was no effect of curiosity. The two graphs depict
the pupillary time series during the same time window but differ in
the baseline windows (beige areas) used to calculate the percentage
change in pupil diameter. The baseline was placed around the onset
of the anticipation phase for the time series in a and around the
onset of the results phase for the time series in b, to ensure that the
effects of curiosity in the results phase were not confounded by
the preceding pupil dilation during the anticipation phase. Average
percentage change of pupil diameter was calculated separately for
the two analysis windows (gray areas)

28) =0.34, p =0.567, and n, = 0.012. However, this null effect was
qualified by a significant Curiosity x Condition interaction, F(1, 28) =
424, p=0.049, and n,=0.132. Follow-up post-hoc tests were
nonsignificant, however, rendering the interpretation of the
interaction inconclusive.

DISCUSSION

This study revealed that asking learners to generate a prediction
about a numerical fact stimulates their curiosity about the true
number. More facts received high-curiosity ratings when learners
predicted the correct answer than when they had to generate an
example. Greater self-rated curiosity was, in turn, associated with
better memory for the true number. Overall memory performance
did not differ between conditions, however. Concurrent pupillary
data revealed that high curiosity, compared with low curiosity, was
associated with larger pupil dilation during anticipation of the
correct answer. Pupil dilation was further enhanced when
participants generated a prediction, both during anticipation of
the correct answer and in response to seeing it.
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How could generating a prediction stimulate curiosity? Berlyne®
hypothesized that generating a prediction leads to increased
arousal, which is relieved when learners see the correct answer.
Loewenstein® argued that prediction plus feedback stimulates
curiosity because it increases the learner’s attention to his or her
knowledge gaps. These conjectures are not mutually exclusive;
indeed, our pupillary data could be interpreted as providing
support for both by showing that generating a prediction leads to
a larger pupil dilation response during anticipation of the correct
answer as well as in response to seeing it. Based on these theories,
we interpret our findings to suggest that generating a prediction
increases the relevance of the knowledge gap, i.e., the subjective
value of the soon-to-be-learned information. The increased
relevance then plays out in enhanced arousal in anticipation of
the solution as well as in enhanced attention to the knowledge
gap. As outlined in the next paragraph, we speculate that a key
driver of the increased curiosity is that participants committed to
an outcome before seeing the correct one, which is inherent in
generating a prediction.

Potts et al.”®> (Experiments 3 and 4) recently demonstrated that
guessing the translation of a foreign language word before seeing
the correct translation leads to greater self-rated curiosity than
when no guess was required or when guessing was done after the
curiosity rating. These findings indicate that the act of generating
a response can lead to increased curiosity. In the current study, we
compared two conditions in which participants had to generate a
response in each before rating their curiosity. Our findings, thus,
suggest that there is more to the curiosity-enhancing effect of
generating a prediction than just generating a response. We
speculate that it is the act of a priori committing to a specific
outcome, which is inherent in generating a prediction, that leads
to the observed boost in curiosity that goes beyond the benefit of
generating a response. Committing to a specific outcome might
increase the relevance of the knowledge gap by raising awareness
of the gap (i.e, knowing that you do not know the correct
number) and by increasing anticipation of the feedback, which is
in line with the observed increased pupil dilation during
anticipation of the correct answer in the prediction condition.

The “increased relevance” interpretation is also in line with the
observed increased pupil dilation in response to seeing the correct
answer in the prediction condition, which suggests that generat-
ing a prediction promotes surprise (see ref. 2'). Again, the current
study, which compared two generative-learning conditions,
suggests that the act of generating is not sufficient to elicit
surprise. Rather, a priori committing to a specific outcome seems
necessary for surprise to occur.

Our results further indicate that curiosity is closely linked to
pupil dilation and, thereby, to noradrenergic activity. During
anticipation of the correct answer, pupil dilation was greatest
when participants had both reported high curiosity about a fact
and generated a prediction regarding the correct answer, and
pupil dilation was smallest when participants had reported low
curiosity about a fact and had not generated a prediction. This
pattern suggests that the amount of pupil dilation is a sensitive
measure of the strength of curiosity. Pupil dilation is preceded by
the release of noradrenaline®® and noradrenergic activity
modulates attentional focus and boosts processing of task-
relevant information.'*'® Together, these observations suggest
that curiosity promotes learning by upregulating neural proces-
sing, thus preparing the brain for subsequent learning.

Choosing the right control condition is the linchpin of
experimental research. We evaluated the effects of generating a
prediction relative to a control condition in which participants
generated an example. We chose generating examples because
this activity could be closely matched to generating predictions; it
was performed prior to the curiosity rating and also entailed
activation of prior knowledge. Such activation was important so
that we could exclude alternative explanations for the curiosity
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boost (e.g., the possibility that any generative learning activity
could stimulate curiosity). However, this design choice might also
have worked against us. According to the knowledge-gap
proposal,® activating prior knowledge could suffice to make
knowledge gaps apparent, which would result in enhanced
curiosity not only in the prediction condition but also in the
example condition. An additional factor that likely worked against
observing a difference between the prediction and examples
conditions was that, given our interest in pupil dilation, we used
an identical 3-s anticipation phase prior to the presentation of the
correct answer in the two conditions. This means that participants
had some time to implicitly generate a hypothesis in the example
condition as well. Thus, our experiment was a conservative test of
the effects of generating predictions on curiosity.

As in previous research, curiosity was positively related to later
memory for the facts presented. However, although generating
predictions rather than examples led to higher curiosity, generat-
ing predictions was not per se more effective in promoting
learning. Responses to the questionnaire suggest some hypoth-
eses about this apparent contradiction. Participants reported that
they had connected the facts with prior knowledge better in the
example condition than in the prediction condition, which likely
compensated for the benefit afforded by curiosity in the
prediction condition. On the whole, our findings suggest that
generating predictions and generating examples derive their
effectiveness from common as well as unique cognitive mechan-
isms. Although our study indicates that stimulating curiosity is
worthwhile because it promotes learning, it does not suggest that
curiosity is the only factor that determines learning performance.

We see several limitations to our study. The first is the short
time span between the study and test phases. This resulted from
our primary focus on how generating predictions could stimulate
the buildup of curiosity during learning. However, this aspect of
our procedure precludes drawing conclusions about whether the
beneficial effects of curiosity on memory increase, decrease, or
even vanish in the longer term. This is an as-yet unanswered
question that deserves attention in future research. A second
limitation is the sample size, which was too small for individual
differences analyses. Sample size was determined a priori with a
view to testing within-subjects condition differences, not
between-subjects correlations. It would be fruitful to investigate
individual differences in curiosity and how they relate to learning
in future studies. A third limitation is the study material: simple,
isolated facts. Although such stimuli are commonly used in
research on curiosity and learning, they are not typical of the
content taught in schools and universities. There is, thus, a need to
replicate our findings using more complex stimuli, such as
scientific concepts. A final limitation is that our study cannot
provide causal evidence for the effects of feedback on curiosity (or
for the combination of prediction and feedback as argued by
Loewenstein®) because our curiosity rating always took place
before the feedback was presented. However, participants
anticipated feedback while making the curiosity rating because
they were always given one afterwards. It is an open question
whether guessing without anticipated feedback would boost
curiosity as well.

If curiosity is indeed the wick in the candle of learning, how can
it be lit? Finding instructional strategies that reliably stimulate
curiosity in learners could be a major contribution of the learning
sciences to educational practice. The results of this study indicate
that a good strategy is to ask learners to generate a prediction
before telling them the correct answer to a question. In line with
the definition of curiosity, this boost is not achieved through
extrinsic rewards but through an intrinsic desire to know whether
a prediction holds true or not. Generating a prediction is also an
efficient instructional strategy?'; it can be used quickly, repeatedly,
and simultaneously within a large group of students, and with the
help of ubiquitous mobile devices such as smartphones or tablets.
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Generating predictions is already a part of successful instructional
curricula, in particular in the sciences.?’® Qur study suggests that
these curricula derive part of their success from stimulating
curiosity.

METHODS

This study (including the main hypotheses, sampling plan, design, and
analysis plan) was preregistered on the Open Science Framework (https://
osf.io/hjr5k).

Participants

The participants were 33 university students (mean age = 22.97; 22 female)
who were native speakers of German. The data of four participants were
discarded, in two cases because of technical problems, in one case
because the participant's age fell far outside the age range in
the preregistered plan, and in one case because of a lack of variance in
the curiosity ratings, i.e., rating of 1 on a scale from 1 to 10 on 79% of trials.
We had not anticipated the latter situation in our preregistered plan and
noticed the inadequate use of the curiosity scale by this participant only
during analyses. We confirmed that including this participant would not
have altered our main results. All reported analyses were conducted with
the remaining data set from 29 participants (mean age = 22.28, range =
19-31; 19 female). Participants were recruited through bulletins within the
university community and gave written informed consent prior to testing.
The sample size was determined a priori using G*Power 3.1%° with the
following settings: paired t test (one-tailed), d, = 0.55, a =0.05, 8 = 0.90.
Participants were paid €10 or received course credit for their participation.
Ethics approval was obtained from the ethics committee of the DIPF |
Leibniz Institute for Research and Information in Education.

Design

We used a within-subjects design with one independent variable
(condition) with two levels (prediction and example). The dependent
variables for the behavioral analyses were participants’ curiosity ratings
and memory performance in the test phase.

Stimuli

Ninety numerical facts in the form of “percentage of” were drawn from
sources such as the Federal Statistical Office. The facts were worded to fit
the format “X out of 10” (the values of X were rounded as needed); none of
the correct answers were “0” or “10.” The set of 90 facts was divided into
two subsets of 45 facts each. The assignment of the two subsets to the two
conditions was counterbalanced across participants, whereas the order of
items remained the same within each subset list.

Procedure

We administered the numerical-facts learning task as a fully-computerized
experimental task. Each condition (prediction and example) consisted of a
study phase followed by a test phase. The order of conditions was
counterbalanced across participants. Testing for order effects by including
order of conditions as an additional factor did not yield any significant
interactions. Each study phase started with two practice trials, followed by
45 facts. Participants were instructed to remember the facts for the
subsequent memory test.

In the study phases of both conditions (Fig. 3), participants were
presented with a series of incomplete facts in “X out of 10” format; (the X
was a placeholder for a missing value). Following the presentation of each
fact, they rated their curiosity about the missing value on a 10-point visual
analog scale (1 =lowest curiosity, portrayed as a stylized mercury-filled
thermometer). After a brief delay in which they saw the initial question
again (the anticipation phase), they were shown the correct number. The
two conditions differed in the generative activity that took place before
the curiosity rating. That is, in the prediction condition, participants were
asked to report their prediction for the correct number by clicking on a 10-
point visual analog scale (portrayed as a series of ten manikins). The
response was then highlighted for 1 s. In the example condition, instead of
predicting the correct number, participants were asked to generate an
instance relevant to the fact. They were instructed to click on one of three
colored buttons as soon as they had thought of an example or to click on
the red square if they could not think of one. Participants indicated the
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Fig. 3 Schematic overview of the study phase. The two experimental conditions differed only in the generative task at the beginning of each
trial: participants had to generate either a prediction for the correct value of X (prediction condition) or an example relevant to the fact
(example condition). After this task, they rated their curiosity about the answer on a 10-point visual analog scale (portrayed as a stylized
thermometer). Next, they saw the initial question again during a brief delay and finally were shown the correct number
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perceived difficulty of generating an example (low, medium, and high)
through their choice of which colored button to click on. In our analyses,
we explored whether this difficulty rating was associated with curiosity and
memory performance. Participants did not state their examples aloud, but
to ensure compliance with the task, we told them beforehand that they
would be asked to provide their examples after completion of the task. To
follow up on this announcement, we later asked them to provide the
examples they generated for a sample of ten prespecified items.

The test phase was preceded by a filler task (~1min), in which
participants repeated sequences of numbers in reversed order (digit-span-
backward task). This task was intended to ensure that the facts were
cleared from participants’ short-term memory. In addition, participants
filled out a brief questionnaire in which they indicated (on a scale from 1,
never, to 6, always) how often they had linked the facts to their prior
knowledge during the study phase and how often they had compared the
correct values with their predictions (or linked them to their examples in
the example condition). The test phases were identical for the two
conditions. Participants saw each of the 45 facts again and had to indicate
the correct value of X on the visual analog scale. Responses were
highlighted for 1 s before the start of the next trial.

Upon completion of the numerical-facts learning task, participants filled
out a brief questionnaire in which they were asked (a) which facts they had
known prior to the experiment, (b) whether they had been more curious in
the prediction condition or the example condition, (c) whether they
thought they learned more in the prediction condition or the example
condition, and (d) whether they had thought about their predictions and
examples during the memory test.

Stimulus presentation and eye tracking

Stimuli were presented using PsychoPy 1.8.3° Participants were seated
about 68 cm from the computer screen in a dimly lit room. The eye-
tracking apparatus (EyeLink 1000, SR Research, Osgoode, ON, Canada) was
located below the screen and recorded data continuously throughout the
study phases at a frequency of 500 Hz. The purpose of the eye tracking was
to record changes in participants’ pupil size during the anticipation phase,
before they were shown the correct answer (Fig. 3).

Data analyses

Data were analyzed using R.' We used an a level of 0.05 in all the analyses.
Across the prediction and example conditions, we discarded a trial if the
participant had known the fact in question prior to the experiment. This
was rarely the case, however (M =0.38% of trials, range = 0-3.33%). We
also discarded trials in the example condition if the participant did not
think of an example (M = 3.75% of trials, range = 0-20%). Including these
trials did not alter the reported condition effects, however.

The performance data were analyzed as specified in our preregistered
analysis plan (https://osf.io/hjr5k). We specified only a rough analysis plan
for the pupillary data, detailing the contrasts and statistical tests to be
performed but not the time window. We did this because the exact time
course of the pupillary response during the anticipation of the correct
answer (i.e., when curiosity should have been maximal) could have differed
from what Kang et al."" observed given that the length of the anticipation
phase differed between their study and ours. As we describe in detail
below, the time courses were in fact highly similar, and we defined
windows based on their data. Nevertheless, these analyses have to be
considered exploratory.

Analysis of the performance data. Using Kang et al’s'' approach, we
analyzed participants’ curiosity ratings by sorting trials into high- and low-
curiosity categories according to a participant-specific criterion (i.e.,
correcting for a participant’s overall ratings of curiosity). Our analysis
differed from that of Kang et al'" however, in that we used a
trichotomization instead of a median split. That is, we computed the
33.33% quantile and the 66.67% quantile of each participant’s curiosity
ratings across conditions. The trichotomization was chosen instead of a
median split because it provides more distinct categories of high and low
curiosity. Trials with a curiosity rating less than or equal to the participant’s
33.33% quantile were categorized as “low,” and trials with a curiosity rating
greater than or equal to the participant’s 66.67% quantile were categorized
as “high.” We excluded trials that fell in both categories or in neither
category. We then determined the percentage of facts categorized as “high
curiosity” in each condition. We exploratively compared this preregistered
categorization approach to using the raw (absolute) curiosity ratings
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instead, which yielded similar results (see “Results” section). Memory
performance during the test phase was assessed as the percentage of
items for which the correct number was recalled exactly.

We also explored the difficulty of generating examples with a view to
testing whether difficulty was associated with curiosity and memory
performance. Because the majority of examples were rated as low difficulty
(M =82.72%, range =40.00-97.78%, and SD=13.10%), we recoded
perceived difficulty into two categories (low vs. medium/high). Low
difficulty ratings were given faster (M =4.71 s and SD = 1.17) than medium
or high difficulty ratings (M =10.51s and SD = 5.09) (t(28) = 6.84 and p <
0.001). Neither curiosity, t(28) = 1.07, p = 0.295, and d = 0.198, nor memory
performance, t(28) =-0.49, p=0.629, and d=0.091, differed between
difficulty levels, so we dropped the difficulty data from further analyses.

Paired t tests were performed to test (a) whether more facts were
categorized as “high curiosity” in the prediction condition than in the
example condition (one-tailed test), (b) whether memory performance was
better for facts categorized as “high curiosity” than for facts categorized as
“low curiosity” (one-tailed test), and (c) whether memory performance
differed between the prediction and the example conditions (two-tailed
test). In accordance with the preregistration, we performed the latter test
as a nondirectional test because both generating predictions and
generating examples are effective learning strategies and curiosity is only
one factor determining learning success, which left it an open question
whether the two conditions should differ in overall memory accuracy.
Finally, a repeated measures ANOVA was computed to see if the effect of
curiosity on memory performance was qualified by an interaction between
curiosity and condition; that is, we hypothesized that curiosity might have
a stronger impact on memory in the prediction condition than in the
example condition.

Analysis of the pupillary data. Pupillary data were analyzed using itrackR
(https://github.com/jashubbard/itrackR), an R package for high-level
analysis of eye-tracking data, along with self-developed analysis scripts.
Pupillary and behavioral data were merged, and the pupil data were
aligned relative to the onset of the anticipation phase. Blinks were
removed and the missing values were interpolated using cubic spline
interpolation. Then, the pupillary data were normalized by subtracting the
diameter at each time point from the average diameter across the period
from 100 ms before the onset of the anticipation phase until 200 ms after
the onset. Finally, the normalized values were divided by that average
value. The resulting percentage-change measure was unconfounded from
any nonspecific effect (e.g., effects of arousal or fatigue) that lasted longer
than an individual trial.

To establish a marker of curiosity in the pupillary data, we calculated the
average percentage change in pupil diameter for each participant 1.5
through 4 s after the onset of the anticipation phase (i.e., from 1.5 s before
the onset of the results phase until 1 s after the onset of the results phase).
This time window was chosen on the basis of the time course observed by
Kang et al."" who noted a ramp-up in pupil diameter about 1.5 s before the
answer was displayed, and a drop back to baseline at around 1.5 s after the
onset of this display. This assumed pupillary trajectory is consistent with
the general idea that the pupillary response is sluggish (~1-s delay) and
curbed to a frequency range below 4Hz3? We calculated average
percentage change separately for the high-curiosity and low-curiosity
trials, and separately for the prediction and example conditions. As
outlined in our preregistered plan, we performed dependent-samples t
tests on the pupillary data to determine the statistical significance of the
difference between high-curiosity and low-curiosity trials in each condition
and to test for differences between the conditions.

Given a previous finding that seeing the correct answer after making a
prediction induces a pupil dilation response®' we also explored the
pupillary response to seeing the correct answer and whether it was
modulated by curiosity. We calculated the average percentage change
from baseline in pupil diameter from 0.5 to 2 s after the onset of the results
phase, separately for each condition for each participant. This time window
was chosen to be relatively earlier and shorter than the one used for the
curiosity analyses because we were interested in the initial reaction to
seeing the correct answer, whereas curiosity should ramp-up slowly in
anticipation of the answer. To ensure that pupil dilation upon seeing the
correct result was not confounded with the preceding pupil dilation during
the anticipation phase, we chose a baseline phase around the onset of the
results phase (100 ms before to 200 ms after onset). Given the exploratory
nature of these analyses, average percentage change in pupil dilation was
subjected to a repeated measures ANOVA omnibus test with curiosity
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(high and low) and condition (prediction and example) as within-subjects
factors.

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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