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Oliver Lüdtke/Alexander Robitzsch

Commentary Regarding the Section 
“Modelling the Effectiveness 
of Teaching Quality”
Methodological Challenges in Assessing the Causal Effects of Teaching

Abstract: In this comment paper, we focus on three particular challenges in specify-
ing appropriate models that can be used to estimate the causal effects of teaching in 
nonrandomized designs. First, we clarify that from a causal perspective the ANCOVA 
and change score approaches address the same research question (i. e., estimating the 
causal effects of teaching) but rely on different assumptions to identify the causal effects. 
Second, we argue that the cumulative effects of teaching (over several years) are often 
underestimated with two-occasion data. Thereby, we also point out the great potential of 
marginal structural models for analyzing the effects of time-varying treatments. Finally, we 
briefly discuss the role of measurement error and compositional effects, which we believe 
deserve further attention in future methodological research.

Keywords: Causal Effects, ANCOVA, Change Scores, Compositional Effects, Measure-
ment Error

1. Introduction

Assessments of the effects of teaching tend to suffer from several methodological chal-
lenges. The articles in this special issue by Naumann, Kuger, Köhler, and Hochweber 
(in this issue) and Köhler, Kuger, Naumann, and Hartig (in this issue) provide an ex-
cellent overview of the many important statistical and methodological developments 
that have been achieved in the last two decades. In this comment paper, we focus on 
the particular challenges in specifying appropriate models that can be used to estimate 
the causal effects of teaching in nonrandomized designs. In line with Naumann et al. 
(in this issue), we want to show the potential of directed acyclic graphs (DAGs; Pearl, 
Glymour & Jewell, 2016) for clarifying the – often not articulated – causal assumptions 
of different modeling choices. More specifically, we use a structural modeling perspec-
tive that relies on DAGs to discuss three analytical issues that we believe are particularly 
relevant in targeting the causal effects of teaching. First, we clarify that the ANCOVA 
and change score approaches to analyzing two-occasion data discussed by Köhler et al. 
(in this issue) address the same research question (i. e., estimating the causal effects of 
teaching) but rely on different assumptions to identify causal effects. Second, we argue 
that the cumulative effects of teaching (over several years) are often underestimated 
with two-occasion data (Raudenbush, 2008). Thereby, we introduce a structural model 
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for three-occasion data and show how the causal effect of a sequence of teaching re-
gimes (e. g., the cumulative effect of teaching across 2 school years) can be estimated. 
We also point out the great potential of marginal structural models for analyzing the 
effects of time-varying treatments (Robins, Hernán & Brumback, 2000). Finally, we 
briefly discuss the role of measurement error and compositional effects, which we be-
lieve deserve further attention in future methodological research.

2. ANCOVA versus Change Scores: A Structural Model Perspective

In the following discussion we introduce a structural model for two-occasion data that 
represents the causal relationships between the variables and allows us to clearly state 
the causal assumptions that are made by the different analytical approaches (see also 
Allison, 1990; Kenny, 1975; Kim & Steiner, 2019). More specifically, we assume that 
a student outcome (e. g., mathematics achievement) is measured at two measurement 
occasions (e. g., Grades 7 and 8), denoted as Y1 and Y2 respectively. We are interested 
in the effect of a treatment A2 (e. g., quality of math teaching in Grade 8) on the out-
come Y2. Furthermore, we assume that a confounding variable U (e. g., socioeconomic 
background, gender) that affects both the student outcomes (Y1 and Y2) and the treat-
ment is present. In the interests of simplicity and transparency, we assume that all effects 
are linear and that the variables are standardized.

To estimate the causal effect of A2, at least three different approaches can be distin-
guished (see Köhler et al., in this issue). First, a naive estimator that ignores the pretest 
measure Y1 is given by

Y2 = τnaive A2 + ε (1)

Note that the naive estimator is a simple regression of Y2 on the treatment variable A2.
Second, an ANCOVA estimator that is conditioned on the pretest measure and has 

been used in many studies can be represented as

Y2 = τANCOVAA2 + β21Y1 + ε (2)

The ANCOVA approach can be considered a special case of a more general class of 
conditioning methods (e. g., matching methods) in which the causal effect is obtained 
by conditioning on the pretest (and other observed covariates; see Morgan & Winship, 
2015).

Third, a change score approach has been recommended to estimate treatment effects 
with two-occasion data (e. g., Allison, 1990). In this approach, the difference between 
the Time 2 and Time 1 scores is regressed on the treatment variable

Y2 − Y1 = τchange A2 + ε (3)
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There has been a longstanding debate among methodologists about whether the AN-
COVA approach or the change score approach is more appropriate for analyzing two-oc-
casion data (Lord, 1967). From a descriptive perspective, it can be argued that the two 
approaches address different questions. In the change score approach, one would be in-
terested in whether differences in the quality of teaching are associated with changes 
in student achievement. By contrast, the ANCOVA approach estimates whether differ-
ences in the quality of teaching predict achievement at Time 2 after controlling for the 
initial level. However, from a causal perspective, the two approaches address the same 
question (i. e., estimating the causal effect of the treatment) but rely on different assump-
tions about potential unobserved confounders. These assumptions can be clarified using 
the structural model in Figure 1.

It can be shown (see Appendix) that the naive estimator provides an unbiased esti-
mate only if the treatment is unrelated to the pretest and to the unobserved confounder – 
a condition that is rarely met in nonrandomized designs. The ANCOVA approach pro-
duces an unbiased estimate of the treatment effect with two-occasion data if, conditional 
on Y1, the unobserved confounder U does not affect the treatment (i. e., γA = 0) or the 
outcome Y2 (i. e., γ2 = 0). Another view of the ANCOVA approach is that it uses the past 
outcome and other observed covariates as a proxy for the unobserved confounder (Kim 
& Steiner, 2019). The change score approach is based on a more subtle set of causal as-
sumptions. First, it is assumed that the treatment is not affected by the past outcome Y1 
(i. e., δ = 0) – an assumption that does not seem very plausible in studies on the effects 
of teaching. Second, the effect of the unobserved confounder U needs to fulfill a very 
specific constraint (i. e., γ2 + βγ1 = γ1) which essentially means that the effects of the 
(time-invariant) variable U are stable across time (also known as the common trend as-
sumption; Allison, 1990).

Table 1 further illustrates the performances of the ANCOVA and change score ap-
proaches under different scenarios. We assumed that the true treatment effect would be 

Fig. 1: Structural model for two-occasion data: Effect of treatment A2 (e. g., quality of teaching) 
on outcome Y2 with effects of the past outcome Y1 and confounder U

Y1 Y2

A2

U

δ τ

γ1 γ2γA

β
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modest in size (i. e., τ = .20) and that the outcome Y would be moderately stable (i. e., 
β = .50), but we manipulated the effect of U on Y2 (i. e., γ2) and the treatment A2 (i. e., 
γA). We also varied whether the past outcome Y1 had an effect on the treatment (i. e., δ). 
As expected, the naive estimator in general overestimated the size of the treatment ef-
fect, and was only unbiased if the confounder U and the pretest Y1 were not related to 
the treatment. The ANCOVA estimator tends to overestimate the true treatment effect 
and is unbiased under conditions in which U does not have an effect on either Y2 (i. e., 
γ2 = 0) or the treatment (i. e., γA = 0). By contrast, the change score estimator is only 
unbiased if δ = 0 and either U does not affect the treatment (i. e., γA = 0) or the common 
trend assumption is met. Interestingly, the ANCOVA and change score estimators have a 
useful bracketing property (Angrist & Pischke, 2009; see also Ding & Li, 2019). Under 
reasonable conditions, the ANCOVA estimator provides an upper bound and the change 
score provides a lower bound for the true treatment effect.1

1 It can be shown that this bracketing property holds under mild assumptions about the data- 
generating model. More specifically, it needs to be assumed that the (cumulative) effect of 
U on the outcome is smaller for the posttest than for the pretest – that is, (1 – β)γ1 – γ2 > 0 – 
and that β < 1 (Angrist & Pischke, 2009).

γ2 δ γA τnaive τANCOVA τchange

0 0 0 .20 .20 .20

0 0 .3 .26 .20 .14

0 .3 0 .35 .20 .05

0 .3 .3 .41 .20 −.01

.1 0 0 .20 .20 .20

.1 0 .3 .29 .23 .17

.1 .3 0 .36 .20 .06

.1 .3 .3 .45 .23 .03

.2 0 0 .20 .20 .20

.2 0 .3 .32 .25 .20

.2 .3 0 .37 .20 .07

.2 .3 .3 .49 .26 .07

Note. It is assumed that the true treatment effect is τ = .20, the stability of Y is moderate (β = .50), and the effect of the 
confounder U on Y1 is γ1 = .40. Unbiased estimates are printed in bold.

Tab. 1: Illustration of bias in the naive, ANCOVA, and change score estimators in two-wave 
design (see Fig. 1): Size of the estimated treatment effect as a function of γ2, δ, and γA
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Overall, we tried to clarify that from a causal perspective, the ANCOVA and change 
score approaches rely on different assumptions for identifying causal effects. Unfortu-
nately, the identifying assumptions of these methods cannot be tested, and in practice it 
is possible that neither of these assumptions will reflect the true data-generating model. 
We tend to prefer the ANCOVA approach because it provides a clear rationale for in-
cluding observed covariates in the analysis (VanderWeele, 2019). However, the change 
score approach offers the option of controlling for the effect of unobserved confounders. 
This comes at the price of a very restrictive assumption about the effects of the unob-
served confounder (i. e., common trend assumption), an assumption that often does not 
seem plausible in practice (see Imai & Kim, 2019; Sobel, 2012). In addition, it can be 
shown that even if the confounder U is observed and included in Equation 3, the change 
score approach will in general produce biased estimates of the causal effect as long as 
the past outcome affects the current treatment (see the Appendix).

3. Assessing the Effects of a Sequence of Teaching Experiences

As aptly pointed out by Raudenbush (2008), “whether children can read or reason math-
ematically is the cumulative result of sequences of teaching experiences over several 
years” (p. 221). However, the two-occasion design is usually limited to assessing the 
teaching effects that occur during a single year. To better understand the limitations of 
two-occasion data for estimating the cumulative effects of teaching, we extended our 
structural model to include three-occasion data (Fig. 2) in which Y0 now denotes base-
line achievement, and A1 and A2 denote a sequence of two treatments (e. g., the quality 
of teaching over 2 years).

Fig. 2: Structural model for three-occasion data: Effect of the sequence of treatments A1 and A2 
(e. g., quality of teaching across 2 school years) on outcome Y2 with the effects of past 
outcomes Y0 and Y1

Y1 Y2

A2A1

Y0
β10 β21

β20

δ10

δ21

γ21

τ11

τ21
τ22

δ20
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Estimation of the causal effect of the sequence of treatments A1 and A2 (also called 
an instructional regime; Raudenbush, 2008) on the final student outcome Y2 thus be-
comes complicated by the fact that Y1 is a time-varying confounder that is affected by 
prior treatment status (i. e., A1). On the one hand, Y1 is a confounder of the relation-
ship between A2 and Y2. Thus, it is necessary to condition on Y1 to obtain an unbiased 
estimate of the effect of A2. On the other hand, Y1 is on the causal pathway between 
past treatment A1 and Y2. Thus, controlling for Y1 would block some of the effect of A1 
on Y2.

Marginal structural models (MSMs) have been developed as powerful tools that can 
be used to address issues of time-varying confounders under different potential time-
vary ing treatment regimes (see also Daniel, Cousens, de Stavola, Kenward & Sterne, 
2013; Robins et al., 2000). The basic idea of MSMs is to specify a model for the treat-
ment regime in which the effects of confounding variables have been removed. In most 
cases, MSMs are estimated by weighting methods (Daniel et al., 2013). However, under 
the assumption of a data-generating model with only linear relations, the coefficients 
of an MSM can be computed from the coefficients of a path model using tracing rules 
(Moerkerke, Loeys & Vansteelandt, 2015). In our case, the joint and direct effects of A1 
and A2 would be given as follows

E(Y2(a1, a2)) = (τ21 + β21τ11)a1 + τ22a2 (4)

where E(Y2(a1, a2)) denotes the expected potential outcome that would have resulted if 
the treatment status for A1 and A2 had been set to levels a1 and a2, respectively. Thus, the 
joint effect of increasing the quality of teaching by 1 unit in both time intervals would 
be (τ21 + β21τ11) + τ22, whereas the direct effects of A1 and A2 would be τ21 + β21τ11 and 
τ22, respectively.

In the following, we use the structural model for the three-occasion data (see Fig-
ure 2) to illustrate how the ANCOVA or change score approaches that rely on only 
two-occasion data (i. e., only considering Y1, Y2, and A2) will result in biased estimates 
of the cumulative effects of a sequence of teaching experiences (see Appendix). We as-
sumed that the outcome Y would show moderate stability across time and that past out-
comes (Y0 and Y1) would have a small effect on the current treatment (A1 and A2). In Ta-
ble 2, we varied the effects of A1 (i. e., τ11 and τ21) and A2 (i. e., τ22) and the stability of 
the treatment (i. e., γ21). The MSM estimates (see Equation 4) provide the joint effect of 
the treatment sequence. For example, in the penultimate row, the joint effect of increas-
ing both treatments by 1 unit is given by (.1 + .55·.2) + .2 = .41, which is the sum of the 
direct effect of A1 and the direct effect of A2. However, both the ANCOVA and change 
score approaches underestimate the joint effect of the treatment. Note that the ANCOVA 
approach is particularly biased when the treatment shows only moderate stability (i. e., 
γ21 ≤ .4). This is a reasonable scenario when classes change their teacher after a year. In 
practice, effects of teaching (or observed covariates) are expected to deviate from lin-
earity (see Naumann et al., in this issue). In this case, the MSMs would also be nonlin-
ear, and weighting or Monte Carlo-based approaches would be recommended (Daniel 
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et al., 2013). We believe that MSMs have great potential and deserve more attention in 
research on the effectiveness of learning and teaching (see Vandecandelaere, Vanstee-
landt, De Fraine & Van Damme, 2016).

4. Further Challenges in Estimation of the Causal Effects 
of Teaching

In our discussion of different approaches for estimating the causal effects of teaching, 
we have made several simplifying assumptions. First, we did not mention the multi-
level structure of educational data. Usually, multilevel models are applied to take into 
account a nested data structure, and to estimate the effects of variables that are located 
at different levels. It should be emphasized that our remarks about the performance of 
the ANCOVA or change score estimators would also apply to specification of the struc-
tural model at the class level in multilevel structural equation models (MSEMs). As 
pointed out by Naumann et al. (in this issue), measures of teaching are affected by dif-
ferent kinds of error (e. g., sampling error, measurement error; Kane & Brennan, 1977). 
MSEMs provide a powerful tool that can be used to take these errors into account when 

τ11 τ21 τ22 MSM γ21 = 0 γ21 = .4 γ21 = .8

Joint A1 A2 τANCOVA τchange τANCOVA τchange τANCOVA τchange

0 0 0 .00 .00 .00 .02 −.05 .05 −.05 .08 −.04

0 .1 0 .10 .10 .00 .02 −.04 .09 .00 .17 .04

0 .2 0 .20 .20 .00 .02 −.04 .14 .05 .27 .13

.1 0 .1 .16 .06 .10 .12 .05 .14 .04 .16 .02

.1 .1 .1 .26 .16 .10 .12 .06 .18 .08 .26 .11

.1 .2 .1 .36 .26 .10 .12 .07 .23 .13 .36 .20

.2 0 .2 .31 .11 .20 .22 .15 .23 .12 .24 .09

.2 .1 .2 .41 .21 .20 .22 .16 .27 .17 .34 .18

.2 .2 .2 .51 .31 .20 .22 .17 .31 .22 .45 .27

Note. MSM = Marginal structural model. It is assumed that the outcome Y shows moderate stability across time 
(β10 = .60, β20 = .30, and β21 = .55) and that past outcomes affect the current treatment (δ10 = .30, δ20 = .10, and 
δ21 = .20). MSM estimates are based on Equation 4.

Tab. 2: Illustration of bias in the ANCOVA and change score estimators with the three-occasion 
data (see Fig. 2) as a function of the effects of A1 and A2 and the stability of the treatment 
(γ21)
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estimating the effects of teaching, but could provide unstable estimates in certain data 
constellations (e. g., a small number of classes, many items, low intraclass correlations). 
Bayesian methods have been shown to provide improved parameter estimates even un-
der such challenging conditions (Zitzmann, Lüdtke, Robitzsch & Marsh, 2016). Alter-
natively, estimation of the measurement model (i. e., model for items) could be sepa-
rated from estimation of the structural model, which could also result in more stable and 
robust estimates (see Anderson & Gerbing, 1982).2

Second, the correct way to treat compositional effects can be debated. More specifi-
cally, when conditioning on the pretest measure (e. g., Y1 in Fig. 1 and 2), it is a crucial 
question as to whether the class mean (or school mean) should also be included in the re-
gression. MSEMs decompose Level 1 predictors into a within-part and a between-part, 
and the group means of the Level 1 predictors are introduced into the model by default 
(Rabe-Hesketh, Skrondal & Zheng, 2012). This strategy of including the group means 
and controlling for compositional effects was also recommended by Köhler et al. (in this 
issue), who noted that “the modeling of T1 at L2 is vital, because otherwise the previous 
average class level would not be controlled for” (p. 204). However, it has been argued 
that controlling for compositional effects can bias the potential effects of teaching qual-
ity (Castellano, Rabe-Hesketh & Skrondal, 2014). Imagine that in the transition from 
elementary to secondary school, students with more favorable background character-
istics are more likely to be sent to better schools (e. g., schools with greater resources, 
more motivated staff, better expected performance). Furthermore, it could be possible 
that better teachers (i. e., higher teaching quality) are attracted by better schools. As can 
be seen in the structural model in Figure 3, this would result in positive associations of 
student achievement Y1 (more exactly, its between-part YB1) as well as the treatment A2 
with the random school effect U on the posttest (i. e., ρYB1UσU > 0, and ρA2UσU > 0). 
Note that the pretest is determined before U and affects the grouping of students into 
different schools, resulting in an artificially increased composition effect (Castellano, 
Rabe-Hesketh & Skrondal, 2014; see also Cronbach, 1976). Hence, the positive covari-
ance ρYB1UσU will positively bias the estimate of βB (i. e., “overcontrolling” for compo-
sitional effects; see the Appendix), which in turn could negatively bias the estimate of 
the treatment effect τ. However, the ANCOVA estimator could also be positively biased 
if higher teaching quality is associated with better schools. In practice, it is likely that 
both bias contributions are present and the ANCOVA estimator would be unbiased in 
the special case that they cancel each other out (i. e., ρA2U − ρYB1UρYB1A2 = 0). Interest-
ingly, the change score estimator has the potential to control for the artificial grouping 
effect of students (unlike the ANCOVA), but will still be biased if the treatment is af-
fected by the pretest, and if the correlation between the pretest and posttest differs sub-

2 For example, in generalizability theory, less parameterized measurement models are used 
to decompose the different error components (Brennan, 2001). Further integration of these 
measurement models would be a promising way to obtain more stable estimates in multilevel 
models.
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stantially from one. Again, this illustrates how a structural model perspective can help 
to clarify the assumptions behind different modeling approaches.
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Appendix: Derivations of Bias for the ANCOVA and 
Change Score Approaches

In this Appendix, we sketch the bias derivations for the ANCOVA and change score ap-
proaches. All variables are assumed to be standardized.

Two-Occasion Data
Given the structural model in Figure 1, the covariances between the observed variables 
Y1, A2, and Y2 are derived as follows: Cov(A2, Y1) = δ + γ1γA, Cov(Y2, Y1) = β + δτ + 
γ1γ2 + γ1γAτ, Cov(Y2, A2) = τ + βδ + γ2γA + βγ1γA + δγ1γ2. Note that the naive estimator 
τnaive is given by Cov(Y2, A2). The ANCOVA estimator (without controlling for the un-
observed confounder U) is given as follows:
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τANCOVA = Cov(Y2, A2) − Cov(Y2, Y1) Cov(A2, Y1) = τ +
  γ2γA (1 − γ2

1) (A.1)
1 − Cov(A2, Y1)2 1 − 2δγ1γA − δ2 − γ2

1γ2
A

The ANCOVA estimator is unbiased if γA = 0 or if γ2 = 0. Furthermore, the change score 
estimator is given by

τchange = Cov(Y2, A2) − Cov(Y1, A2) = τ + γA(γ2 + βγ1 − γ1) + δ(β + γ1γ2 −1) (A.2)

The change score estimator is unbiased if δ = 0 and if γ2 + βγ1 = γ1 (i. e., the effect of U 
is stable with respect to Y1 and Y2). In addition, it is evident that the ANCOVA estimator 
is unbiased if the confounder U is included in the regression in Equation 2. However, it 
can be shown that the change score estimator is not unbiased even if the confounder U 
is included in the regression in Equation 3

τchange,U = Cov(Y2 − Y1, A2) − Cov(Y2 − Y1, U) Cov(A2, U) 
= τ +

    δ(1 − β) (1 − γ2
1)

1 − Cov(A2, U)2 1 − 2δγ1γA − γ2
A − δ2γ2

1

In this case, the change score estimator would be unbiased if δ = 0 (i. e., past outcome 
Y1 does not affect the treatment).

Three-Occasion Data
The structural model for the three-occasion data consists of five observed variables (i. e., 
Y0, Y1, Y2, A1, and A2). The implied covariances between Y1, Y2, and A2 are given as fol-
lows:

Cov(A2, Y1) = δ21 + β10 δ20 + γ21 τ11 + β10 δ10 γ21 + δ10 δ20 τ11

Cov(Y2, Y1) = β21 + β10 β20 + δ21 τ22 + τ11 τ21 + β10 δ10 τ21 + β10 δ20 τ22 + β21 + β10 β20 
+ δ21 τ22 + τ11 τ21 + β10 δ10 τ21 + β10 δ20 τ22

Cov(Y2, A2) = τ22 + β20δ20 + β21 δ21 + γ21 τ21 + β10 β20 δ21 + β10 β21 δ20 +  β20 δ10 γ21 + 
β21 γ21 τ11 + δ10 δ20 τ21 + δ21 τ11 τ21 + β10 β21 δ10 γ21 + β10 δ10 δ21 τ21 + 
β20 δ10 δ21 τ11 + β21 δ10 δ20 τ11

The ANCOVA and change score estimators that ignore the baseline measure Y0 and the 
previous treatment A1 can now be derived by inserting the covariances into Equations 
A.1 and A.2. The calculations, however, are cumbersome and do not provide any fur-
ther insights.
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Role of Compositional Effects
The covariances between the observed variables at the between level are given as fol-
lows (see Fig. 3): Cov(A2, YB1) = ρYB1A2; Cov(YB2, YB1) = βB + τρYB1A2 + ρYB1UσU; Cov-
(YB2, A2) = τ + βBρYB1A2 + ρA2UσU . The between group coefficient of the pretest YB1 is 
given as

β̂B = βB + (ρYB1U  − ρA2UρYB1A2)σU
1 − ρ2

YB1A2

which is positively biased if ρYB1U − ρYB1A2ρA2U > 0. Typically, the ANCOVA estimator 
of the treatment effect at the between level is biased

τANCOVA = τ + (ρA2U  − ρYB1UρYB1A2)σU
1 − ρ2

YB1A2

It overadjusts for the compositional effect if ρA2U − ρYB1UρYB1A2 < 0 which, in turn, re-
sults in a negatively biased treatment effect estimate. The change score estimator can 
be calculated as

τchange = τ + ρA2UσU − (1 − βB)ρYB1A2

If 1 − ρ2
YB1A2 ≈ 1, it can be seen that the change score estimator has a lower potential for 

negative bias if 1 − βB < ρYB1UσU, which is fulfilled if pretest YB1 and posttest YB2 are 
highly correlated at the between level.

Zusammenfassung: Der vorliegende Kommentar konzentriert sich auf drei Heraus-
forderungen, die bei der Spezifikation des Analysemodells auftreten. Erstens wird ge-
zeigt, welche Annahmen über die Wirkung konfundierender Variablen sowohl mit dem 
ANCOVA- als auch mit dem Differenzwert-Ansatz getroffen werden müssen. Zweitens 
wird argumentiert, dass die kumulativen Effekte des Unterrichts (über mehrere Jahre) mit 
Zwei-Wellen-Daten häufig unterschätzt werden. Dabei wird das große analytische Po-
tential von Marginal Structural Models betont, die sich besonders zur Schätzung zeitlich 
variierender kausaler Effekte eignen. Abschließend werden mit der Rolle des Messfehlers 
und der Behandlung von Kompositionseffekten zwei Themen diskutiert, die aus unserer 
Sicht in zukünftiger Forschung noch mehr beachtet werden sollten.

Schlagworte: kausale Effekte, ANCOVA, Differenzwerte, Kompositionseffekte, Messfeh-
ler
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