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By tailoring test forms to the test-taker’s proficiency, Computerized Adaptive Test-
ing (CAT) enables substantial increases in testing efficiency over fixed forms testing.
When used for formative assessment, the alignment of task difficulty with proficiency
increases the chance that teachers can derive useful feedback from assessment data.
The application of CAT to formative assessment in the classroom, however, is hin-
dered by the large number of different items used for the whole class; the required
familiarization with a large number of test items puts a significant burden on teach-
ers. An improved CAT procedure for group-based testing is presented, which uses
simultaneous automated test assembly to impose a limit on the number of items
used per group. The proposed linear model for simultaneous adaptive item selec-
tion allows for full adaptivity and the accommodation of constraints on test content.
The effectiveness of the group-based CAT is demonstrated with real-world items in
a simulated adaptive test of 3,000 groups of test-takers, under different assump-
tions on group composition. Results show that the group-based CAT maintained the
efficiency of CAT, while a reduction in the number of used items by one half to two-
thirds was achieved, depending on the within-group variance of proficiencies.

Introduction

Formative assessment has attracted considerable attention by educational re-
searchers in the past 20 years, mostly spurred by the highly influential review by
Black and Wiliam (1998), who analyzed a broad corpus of literature and put a spot-
light on the potential of formative assessment for the improvement of learning. What
makes assessment formative is, as has been rightfully noted, not simply the use of
specific instruments (Popham, 2008), but a purposeful integration of adequate in-
strumentation into processes and practice (Bennett, 2011). The specific requirements
raised by the intended processes and the embedding into a didactic context hence
necessitate the development of customized measurement instruments.
The digital transformation in education opens up new possibilities and poten-

tials for the design of instruments as technology-based assessment progresses from
what once were essentially digital versions of paper-based tests to the use of in-
novative item formats and complex and interactive simulation-based tasks (Ben-
nett, 2015). Technology-based assessment also enables adaptivity and personal-
ization by the means of Computerized Adaptive Testing (CAT; Weiss, 1982). By
selecting test items that match the proficiency level of the test-taker, CAT increases
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Simultaneous Constrained Adaptive Item Selection

testing efficiency (Segall, 2005), allowing frequent yet reliable assessments of learn-
ing states. Moreover, it offers test-takers tasks of adequate challenge, which increases
the chance that feedback generated from the results can be valuable (Hattie & Gan,
2011).
The German VERA (Vergleichsarbeiten, roughly: comparative tests) is a national

complete survey of math and German language competencies of students of classes
3 and 8 conducted yearly in alternating sets of federal states. The assessment pro-
gram serves a dual purpose as it aims not only at monitoring and accountability, but
also at school development and the improvement of instructional practices (Ditton,
2008; Helmke & Hosenfeld, 2003). Reports provided to teachers include test scores
as well as analyses at item level, such as frequently made mistakes and percentages
correct, which are presented in relation to the performance of students from schools
with similar background variables (Groß Ophoff, Koch, Hosenfeld, & Helmke, 2006;
Nachtigall & Kroehne, 2006). Accompanying materials are provided by state au-
thorities to guide teachers in deriving actionable adjustments to their instructional
practice from the feedback (e.g., Lankes, Rieger, & Pook, 2015; Pädagogisches Lan-
desinstitut Rheinland-Pfalz, 2018). For instance, the performance of students on a
particular item may deviate substantially from that of the reference group or the
teacher’s own expectations. In that case, teachers are advised to review the item
with particular attention to the competencies required to arrive at a correct solution,
which may provide insight into the students’ strengths and weaknesses and suggest
possible starting points for instructional adjustments (Meevissen et al., 2013). Con-
cerning instructional goals, VERA is intended to stimulate the progression toward
competency-oriented instruction and to promote a change in the culture of testing
and assessment items. In that respect, encouraging teachers to work at the item level
also has the purpose of engaging teachers with material that is deemed exemplary for
the assessment of competencies and in alignment with federal educational standards
(Meevissen et al., 2013).
The VERA assessment is currently delivered as a teacher-administered paper and

pencil test, but by federal decision, it is moving toward computer-based assessment
(Sekretariat der Ständigen Konferenz der Kultusminister der Länder in der Bundesre-
publik Deutschland, 2012), with some states beginning to discuss CAT. While the
paper-based assessment is well aligned with the practice of working at the item level,
the move toward computer-based assessment and CAT presents a challenge in this
respect. This is because due to adaptivity and the necessity of using large item pools,
the total number of items administered to a group of test-takers (e.g., the students
in one classroom) is usually very high. As the intended item-level analyses require
a substantial degree of familiarity with the items, which are externally developed,
the required effort on the side of the teachers needs to be limited in order to secure
ongoing acceptance and support of the program. Figure 1 shows the total number
of items used per group when administering a standard CAT based on an item pool
of 128 items to groups of different sizes.1 Even for the shortest test lengths, groups
of all but the smallest sizes mostly received well over 70 different items. For the
group size of 25 and a test length of 25, the median number of items per group is as
high as 123, with some groups that have exhausted the item pool. Familiarizing with
so many items would impose a significant burden on teachers and would, in fact,
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Figure 1. Total number of different items administered per group of
test-takers in a simulated assessment using a standard CAT algorithm.
Item pool size is 128.

render item-level analyses of results from CAT infeasible. At the same time, very
few items would receive a sufficient number of responses to make these analyses
meaningful due to the resulting low overlap between the tests of students in each
group. Therefore, if assessments like VERA are to leverage the advantages of CAT,
effective control of the total number of items per group becomes a requirement.
The purpose of the present paper is to introduce a novel adaptive item selection

method that enforces the required limit on the number of different items per group to
reconcile adaptive testing with item-level analyses of results in group-based assess-
ments. Our approach makes the number of total items per tested group a parameter
of the test specification, which in turn controls the effect of a group-level constraint.
The group-level constraint is put into effect by using a test assembly model, which
encompasses the tests of a whole group (e.g., school class) of test-takers undergoing
assessment concurrently. The assumption of concurrent test-taking made here aligns
with usual classroom testing as well as with state testing programs such as VERA.
Taking into account the group level in the model for test assembly allows to trade
off the range of adaptivity and hence, measurement precision, against the burden on
teachers resulting from familiarization with test items. At the same time, item-level
adaptivity and full control of aspects of test assembly pertaining to the individual test
forms are carried over from standard CAT approaches.
The remainder of the paper is organized as follows. First, we discuss the prob-

lem of simultaneous adaptive item selection. We demonstrate how the associated test
assembly problem can be treated in the framework of integer linear programming,
using two different linearizations of the multiobjective decision problem inherent in
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Simultaneous Constrained Adaptive Item Selection

simultaneous optimization of multiple test forms. We then describe the group-based
CAT procedure (termed GCAT), which uses the test assembly model, and conduct
simulations to evaluate the measurement properties of the GCAT variants. We com-
pare the GCAT method to standard CAT and fixed forms testing and analyze the
composition of the assembled tests with respect to overlap of test forms within the
groups. We conclude with a discussion of the implications of our results.

Simultaneous Item Selection for Multiple Test-Takers

As laid out above, we assume that a group of test-takers undergoes testing in one
session. The test-takers in the group start at the same time and proceed through the
test at their own discretion. In this setup, all relevant data collected from the test-
takers in the group are available for ability estimation and item selection at any point
in time during the test session. This allows to carry out item selection for the indi-
vidual tests using a model that comprises the test forms of the whole learning group.
Aspects of test composition at the group level, in particular, total item usage, can then
be controlled by optimizing the individual test forms jointly and simultaneously, sub-
ject to constraints at group and individual levels. Updates of the test assembly model
are carried out periodically during the test to account for the responses that have been
recorded since the last update.
The test assembly model which is at the heart of the GCAT fuses the shadow test

approach (STA) proposed by van der Linden and Reese (1998) with models devel-
oped for the simultaneous assembly of multiple fixed forms tests (van der Linden &
Adema, 1998; van der Linden, 2005) to enable constrained adaptive testing of groups
of test-takers. Our model applies the central idea of the STA, which is item selection
in terms of complete tests, extending it to the set of test forms selected at the group
level. At the individual level, the model contains a shadow test for each test-taker. The
purpose of these integrated shadow tests is to ensure that each test-taker‘s test com-
plies with the individual-level test blueprint, which specifies all constraints whose
scope is that of a single test, for instance, content balancing. The individual-level
shadow tests are coupled by group-level constraints and optimized simultaneously
with respect to an objective function that balances the individual tests’ information.
In the next section, we fix notation and give a precise formal statement of the proce-
dure outlined above.

Test Assembly Model

We will denote by G = {1, . . . , J} the group of test-takers and by P = {1, . . . , I}
the item pool, which is assumed to be calibrated under an item response model.
By Ii we denote the item information function for item i, which we will assume
to be additive such that the test information function for a test T ⊂ P is given by
IT = ∑

i∈T Ii.
The GCAT system records all response data submitted by the test-takers. An up-

date of the test assembly model and subsequent item selection may be triggered by
either the event of an incoming response or by polling new responses regularly. At
the time of the model update, we describe the state of the group of test-takers in
a straightforward adaptation of the conventional notation (e.g., van der Linden &
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Bengs, Kroehne, and Brefeld

Glas, 2010) as follows. Let L be the test length, which is fixed and uniform across
G and denote by 1 ≤ k( j) ≤ L the current position of test-taker j in the adaptive test.
Then, the set of items that have previously been administered to j and for which a
realization of the response variables has been registered to j is given by

S( j)k( j)−1 =
{
i( j)1 , . . . , i( j)k( j)−1

}
. (1)

Based on the responses to the items in S( j)k( j)−1 an interim ability estimate for test-
taker j can be computed (or an initial estimate used if k( j) = 1), which is denoted
by θ̂

( j)
k( j)−1. Let F ⊂ G denote the subset of test-takers who have finished an item by

registering a response since the last update of the test assembly model, that is, all
j ∈ F are pending for selection and assignment of ik( j) . For the remaining test-takers
j ∈ G \ F , item i( j)k( j) has been assigned in the course of a previous model update but
has not yet received a response and must therefore be held fixed during test assembly.
In order to formulate the test assembly model, it is convenient to introduce deci-

sion variables xi j ∈ {0, 1}, where i ∈ P and j ∈ G, such that

xi j =
{
1, if item i is in the test of test-taker j

0, else.
(2)

Objective Function. The objective of the GCAT can then be stated as follows.
For each test-taker j ∈ G, maximize

I∑
i=1

Ii(θ̂
( j)
k( j)−1)xi j (3)

subject to constraints, which will be given in the next section. In general, the con-
straints at the group level introduce dependencies between the individual test infor-
mation functions—selecting an item into the set available for the group may increase
test information for some test-takers, while decreasing that of others. This conflict
of objectives renders the GCAT test assembly model a nontrivial multiple objective
decision problem (see Veldkamp, 1999, for a discussion of other multiple objec-
tive decision problems in test assembly), which needs to be linearized in order to
be solved in the integer linear programming framework. We discuss two different
linearization approaches, each of which favors solutions of different character. The
first approach combines the objectives for the individual tests into a single, linear
objective by forming a weighted sum (Veldkamp, 1999). This yields the objective
function

f (x) =
J∑
j=1

wj

I∑
i=1

Ii
(
θ̂
( j)
k( j)−1

)
xi j, (4)

where the weights wj are positive real numbers. We will refer to this approach as
the weighted objective function. If used with uniform weights, wj = 1 for all j, the
weighted objective function is expected to favor solutions that put more test infor-
mation around the center (mean) of the latent continuum. This is because under the
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Simultaneous Constrained Adaptive Item Selection

usual assumption of a normal distribution of proficiency, extreme realizations of pro-
ficiency are rare and thus, the selection of items matching average proficiencies leads
to a greater value of the objective than the selection of items that contribute to higher
test information for test-takers with more extreme proficiency levels. By using dif-
ferent weightings, for instance, based on prior knowledge about proficiencies, or by
changing the weights dynamically during the test, adjustments to this behavior could
be realized. Dynamic weighting could be defined in terms of reliability of the in-
terim ability estimates or on the estimates themselves; however, we do not pursue
this direction in the present article.
The second linearization approach is the maximization of the minimum of the indi-

vidual objectives, which was first used for test construction by Boekkooi-Timminga
(1989) and for the assembly of multiple test forms by van der Linden and Adema
(1998). It can be realized in a linear program by specifying a trivial objective

maximize y, (5)

along with the constraint

I∑
i=1

Ii
(
θ̂
( j)
k( j)−1

)
xi j ≥ y, for all j. (6)

We will refer to Equations 5 and 6 as the maximin objective function. The max-
imin objective encodes a different prioritization in the assignment of items than the
weighted objective function. Because the test-taker with the least informative test
dominates the objective value, a trade-off between the test-takers’ tests is favored,
which balances test information well between all test-takers in the group.

Individual-Level Constraints. As in the standard STA, a number of technical
constraints are required. In the GCAT, they are applied to all test-takers as follows:

I∑
i=1

xi j = L, for all j (test length) (7)

fixes the test length and∑
i∈S( j)

k( j)−1

xi j = k( j) − 1, for all j (inclusion of previously administered items) (8)

ensures that the test assembly model takes into account those items that have pre-
viously been administered and completed. Similarly, the current item c( j) = i( j)k( j) of
the test-takers who have been assigned an item but not responded yet is taken into
account by the constraint

xc( j) j = 1 for all j ∈ G \ F (inclusion of current item). (9)

The technical constraints laid out so far are, along with the group-level constraints
discussed in the next section, sufficient to implement the GCAT bare of any con-
straints on test content. The flexibility of the integrated STA however allows, in
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Bengs, Kroehne, and Brefeld

principle, the application any constraint on individual test content that can be for-
mulated as a linear inequality.
As a practical example, we will discuss the constraints arising from the content

balancing, which is applied in the simulation study presented below. Here, the item
pool contains items associated with different content areas,C1, . . . ,CF , which should
be represented in each test to a certain amount. By introducing lower bounds b f and
upper bounds Bf for each f = 1, . . . ,F , constraints∑

i∈Cf

xi j ≥ b f , for all j (lower bound for Cf ) (10)

∑
i∈Cf

xi j ≤ Bf , for all j (upper bound forCf ) (11)

are added.

Group-Level Constraints. The following constraints implement control of the
number of different items used at the group level. They are formulated in terms of
auxiliary decision variables z1, . . . , zI ∈ [0, 1]. The purpose of zi is to act as a flag
indicating whether item i is selected into the test of at least one test-taker.2 This
amounts to a relation between (xi j )i∈P, j∈J and (zi)i∈P, which can be encoded by the
set of linear constraints

zi ≥ xi j , for all j (zi must be 1 if any xi j is 1) (12)

and

zi ≤
J∑
j=1

xi j , for all i (zi must be 0 if all xi j are 0). (13)

The desired bound on the total number of items used for the group then takes the
form

I∑
i=1

zi ≤ M. (14)

The value chosen for the upper bound M in Equation 14 as part of the test specifica-
tion allows to impose a limit on the number of total items. The effects of parameter
M on the measurement properties of the GCAT is explored in the simulation study
reported below. As in the standard STA (van der Linden & Reese, 1998), if a feasi-
ble solution to the initial test assembly problem exists, the subsequent test assembly
problems remain feasible for the whole length of the test.

Item Selection. Suppose that (xi j )i∈P, j∈G is a solution to the optimization problem
defined by Equations 4 to 14. Then, T ∗

j = {i ∈ P : xi j = 1} is the shadow test for
test-taker j, that is, the optimal constraint compliant test for j at his/her current
ability estimate. If j ∈ F , meaning that test-taker j has finished the k( j)th item and is
pending for item selection, j is assigned the most informative item in T ∗

j , which has
not been administered to her or him before, which is given by

ik( j) = argmaxi∈T ∗
j \S( j)

k( j)−1

Ii
(
θ̂
( j)
k( j)−1

)
. (15)
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Table 1
Correlation Matrix of Item Parameters

Variable b α β

b 1.00
α −.29 1.00
β .14 −.32 1.00

GCAT Procedure

The GCAT proceeds in the following steps:

1. Initialization. Set k( j) = 1 for all j ∈ G and set θ̂
( j)
k( j)−1 to the desired initial

value, for example, the population mean or according to prior knowledge. Set
F = ∅ and go to step 2.

2. Update of test assembly model. Update the set F to include all test-takers who
have submitted a response since the last model update. For all j ∈ F , increment
k( j) and update the ability estimate θ̂

( j)
k( j)−1. Compute the solution (xi j )i∈P, j∈J to

the test assembly model and carry out item selection.
3. Termination criterion. Continue to repeat step 2 periodically until all test-takers

have completed L items or an overall time limit is reached.

Simulation Study

We conduct a simulation study to investigate the properties of the proposed GCAT
and to compare it with standard CAT and traditional fixed forms testing. The scenario
of concurrent test-taking requires simulation of response times as well as response
accuracies to account for different speeds at which test-takers may progress through
the test. We first discuss the recalibration of the item pool under an appropriate model
before we describe the test blueprint regarding content balancing and address data
generation and the evaluation criteria used.

Item Pool and Calibration

The item pool used for the simulations was originally assembled and calibrated
by Frey, Kroehne, and Born (2011). It is comprised of 128 items designed to mea-
sure mathematical proficiency in students of classes 6 to 9 as part of the German
Competence Assessment and other large-scale assessments. For the purpose of sim-
ulating response times in the present study, the items are recalibrated under a joint
model for response times and response accuracies (van der Linden, 2007). Response
accuracies are modeled by a 1PL model following the original calibration by Frey
et al., who acknowledged the lack of data to fit more complex response models
and had selected the presently used 128 items from a set of 155 to ensure satis-
factory fit of the remaining items. A log-normal model is used for response times
(van der Linden, 2006). The model is fit using the R (R Core Team, 2018) package
LNIRT (Fox, Klein Entink & van der Linden, 2007; Fox, Klotzke, & Klein Entink,
2019). Table 1 shows the estimated correlations between item difficulty b, time
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Bengs, Kroehne, and Brefeld

discrimination α, and time intensity β. The correlation between person parameters
proficiency and speed is estimated at ρθτ = −.19.

Test Blueprint

The content covered by the test items is divided into five areas, C1, . . . ,C5, asso-
ciated with five key concepts specified by the curriculum (numbers, measurement,
space and shape, functions, data, and chance). According to the test specification,
each of these key concepts is required to be represented in each test-taker‘s test by
equal parts. For any test length L divisible by five, the part of the test blueprint per-
taining to content balancing is defined by requiring that for each test-taker j and each
content area f , the condition∑

i∈Cf

xi j = L

5
, (target proportion for Cf ) (16)

is satisfied.

Data Set

The base data set for the simulations is generated by drawing a set of N = 3000 ·
25 test-takers, represented by their proficiency θ and speed τ. The trait vectors are
drawn from a bivariate normal distributed population with zero mean, στ = σθ = 1
and a correlation of ρθτ = −.19 estimated for the calibration sample. The test-takers
are randomly assigned to NG = 3, 000 groups of each J = 25 test-takers. This re-
flects a simplistic scenario where no systematic effects influence group composition
and intraclass correlations of the proficiency and the speed variable are each zero.
In order to arrive at a more realistic setting in which a varying proportion of

variance in proficiency is explained by the group level, five derived data sets are
created by reducing the variance in θ such that, after adding a group-level effect
Ug ∼ N (0, σU ), an intraclass correlation coefficient ρI of {.1, .2, . . . , .5} results;
overall variation is kept fixed at σθ = 1. This range of ρI includes intraclass corre-
lations usually found in educational assessments (e.g., Hedges and Hedberg, 2007a,
2007b). As we are not aware of reports on the typical intraclass correlations for the
speed parameter of the response time model, τ is not modified, leaving the intraclass
correlation of τ at 0.

Setup of GCAT and Baseline Methods

The GCAT procedure is simulated with both the weighted and the maximin objec-
tive function for each of the groups with a limit on the number of items per group of
M = 30, 40, and 50 and is labeled GCAT-M. The weighted objective is used with
uniform weights, that is, wj = 1 for all j. Test lengths of L = 15, 20, 25 are used.
As baselines, we compare against a standard CAT procedure (labeled CAT) based
on the STA and a fixed forms test optimized by the method presented in van der
Linden (2005, pp. 113ff.) using a relative target matching the simulated proficiency
distribution in the population. The test assembly model of both the fixed forms and
the CAT baseline enforce the same test blueprint as the GCAT. For all methods,
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Simultaneous Constrained Adaptive Item Selection

expected a posteriori ability estimation is employed using a standard normal prior
and the information criterion is expected Fisher information. Response times are not
used as collateral information during ability estimation and solely serve the purpose
of simulating the individual pacing of test-takers.
The linear model for test assembly is implemented using the GNU Linear Pro-

gramming Toolkit (GLPK; Makhorin, 2016) for the solution of the test assembly
problem. Newly registered answers are collected once per simulated second and the
test assembly model is updated as necessary. The time used to carry out the optimiza-
tion is not taken into account in the simulation as it is largely implementation depen-
dent and for practical implementations of the procedure, it should be kept as low as
possible to avoid substantial waiting times for the test-takers. We do, however, report
the computation time recorded by the CAT system and evaluate practical feasibility
of simultaneous adaptive test assembly as implemented in our research prototype.

Evaluation Criteria

The results are evaluated based on the following criteria: Measurement precision
is evaluated in terms of mean squared error (MSE)

MSE = 1

N

N∑
j=1

(
θ̂ j − θ j

)2
, (17)

and bias,

Bias = 1

N

N∑
j=1

(
θ̂ j − θ j

)
. (18)

For the computation of conditional MSE and bias, θ values of the data set are binned
in the intervals

Ik = [−3.5 + k,−3.5 + k + 1), k = 0, . . . , 6,

and averages in Equations 17 and 18 are taken for { j : θ j ∈ Ik} and reported at the
interval center points.
To provide insight into the effect the limit on the number of items per group has on

test composition, we compute the average number of common items between the test
forms of two test-takers within a group as follows. Starting from the overlap between
a pair of test forms (S,T ) ⊂ P,

O(S,T ) = |S ∩ T |, (19)

the average Og is taken for each simulated group g and finally the average across
groups is computed by

Ō = 1

NG

NG∑
g=1

Og. (20)

Conditional mean pairwise overlap is computed by restricting the pairs S,T to test-
takers whose proficiency ranges in the interval Ik, k = 0, . . . , 6.
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Figure 2. Conditional MSE of fixed forms, GCAT (weighted objective), and CAT, for
test lengths 15, 20, 25 (columns), ρI = 0 (top) and ρI = .5 (bottom).

Results

Measurement Error and Bias

We investigate measurement properties in terms of conditional and unconditional
(average) MSE and bias, comparing the GCAT variants to each other and to fixed
forms testing and a standard CAT baseline.

Relation of CAT, GCAT, and Fixed Forms. As should be expected, lowest con-
ditional MSE is attained by the standard CAT procedure, which may utilize the whole
item pool in one group (Figures 2 and 3). On the other extreme ranges the fixed forms
test, which, limited to a fixed set of items (albeit optimized for the assumed popula-
tion distribution), is conceded no room for adaptation. The MSE curves of the GCAT
interpolate between those of the standard CAT and the fixed forms test, with MSE
decreasing with an increasing value for the bound on the number of items per group.
In contrast to the fixed forms test and the standard CAT, which are not influenced by
group composition, the average MSE realized by the GCAT decreases as intraclass
correlation increases (Figure 6). This is expectable because the narrower proficiency
spectrum of more homogeneous groups can be covered better with a given number
of items from the pool.
The same observations can be made for conditional bias (Figures 4 and 5).

Objective Function. As explained above, the specification of the objective func-
tion in the test assembly model for GCAT encodes a preference for the quality of
the solution. In accordance with our expectation, differences in the conditional MSE
curves between the weighted and the maximin objective are evident in Figures 2 and
3. The weighted objective outperforms the maximin objective in the middle of the
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Simultaneous Constrained Adaptive Item Selection
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Figure 3. Conditional MSE of fixed forms, GCAT (maximin objective), and CAT, for
test lengths 15, 20, 25 (columns), ρI = 0 (top) and ρI = .5 (bottom).
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Figure 4. Conditional bias of fixed forms, GCAT (weighted objective), and CAT, for test
lengths 15, 20, 25 (columns), ρI = 0 (top) and ρI = .5 (bottom).

proficiency distribution, however this comes at the cost of less measurement pre-
cision for the more extreme proficiencies. The maximin objective in turn allocates
more test information to test-takers exhibiting extreme proficiency levels. Hence the
MSE curves for the GCAT using the maximin objective are flatter and follow those
of the CATi baseline more closely. Notably, the precision of the maximin GCAT
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Figure 5. Conditional bias of fixed forms, GCAT (maximin objective), and CAT, for test
lengths 15, 20, 25 (columns), ρI = 0 (top) and ρI = .5 (bottom).

approximates that of the CAT baseline already for low intraclass correlations when
M = 50, corresponding to a reduction of the number of items used to 50% of that
of CAT, which used more than 100 items on average (cf. Figure 1). When intraclass
correlation is higher,M = 30 items and hence a reduction to about 30% of the items
used per group by the CAT baseline were sufficient to almost attain the same level of
precision. With increasing intraclass correlation, the differences between the objec-
tive functions decrease and for ρ = .5, become very small. The same observations
also apply mutatis mutandis to conditional bias (Figures 4 and 5).
Due to the normal distribution of proficiency in the simulated data set, the

weighted objective outperforms the maximin objective in terms of average MSE.
With increasing intraclass correlation and hence, increasing group homogeneity, the
differences between the objectives become less marked and overall MSE decreases
(Figure 6).

Test Overlap

It seems reasonable to expect that a reduction of the total number of items
per test-taker group should lead to increased overlap in the group members‘ test
forms. The simulation results show that indeed, this relationship holds within the
GCAT variants (Figures 7 and 8). When comparing the GCAT to standard CAT, the
situation is more complex. The standard CAT procedure led to the smallest overlap
for average proficiency levels. This can be attributed to the fact that items of average
difficulty are relatively abundant in the item pool and could be selected quite freely.
Conversely, the high overlap exhibited by standard CAT at the extremes is related to
the sparsity of items of high and very low difficulty. The weighted objective GCAT
interpolates between the standard CAT and the fixed forms baseline also with respect
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Simultaneous Constrained Adaptive Item Selection
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Figure 6. Comparison of weighted and maximin objective for GCAT with varying
interclass correlation in terms of average MSE. Errorbars: ± one standard error of the
mean.
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Figure 7. Conditional pairwise overlap between tests, average taken across groups for fixed
forms, GCAT (weighted objective), and CAT, for test lengths of 15 (left), 20 (middle), 25
(right), and ρI = 0 (top), ρI = .5 (bottom).

to overlap, producing less overlap when the maximum number of items per group is
greater (Figure 7). The maximin objective GCAT however exhibits flatter overlap
curves with higher overlap than standard CAT in the center and lower overlap in the
extremes. This means that overlap between test forms is similar for test-takers of
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similar proficiency levels, relatively independent of their actual proficiencies. Over-
lap decreases for both GCAT variants when intraclass correlation is higher (Figures 7
and 8).

Computation Times

The computational expense needed for optimal test assembly in the experiments
presently conducted depends largely on the type of objective function used (Table 2).
With the implementation of the test assembly model and the hardware (Intel Xeon
E5-2620 CPU equipped with 64GB of RAM) presently used, the median computa-
tion time required to optimize the maximin objective is between 2 and 3 seconds,
with maximum computation times of over 1 minute (Table 2). The weighted ob-
jective is optimized markedly faster, with median computation times just above 1
second and maximal times of about 2.5 seconds. A decrease in computation time can
be observed as the bound on the total number of items is increased, coinciding with
the intuition that the item selection problem becomes easier when the use of more
items is allowed.

Discussion

The GCAT procedure was proposed for testing groups of test-takers under a con-
straint on the total number of items used per group. The limit on total items per group
facilitates formative use of assessment data by teachers, as it reduces the burden re-
sulting from the required familiarization with test items, which often are externally
developed. A simulation study was conducted, which confirmed the theoretical ex-
pectation that the model of simultaneous test assembly used in the GCAT enabled
effective control of the number of items per tested group. The simulations were eval-
uated with respect to the impact of the limit on total items per group on measurement
properties and test overlap, comparing the proposed GCAT to a standard CAT pro-
cedure and fixed forms testing. The results indicate that the GCAT maintained the
benefits afforded by adaptive testing but effectively limited the number of items used
per group. In the condition with no intraclass correlation of proficiencies, the number
of items used by standard CAT could be cut roughly by half (to 50 items), without
sacrificing much accuracy. In the condition with higher intraclass correlation, about
a third of the items used by standard CAT were sufficient to achieve measurement
precision virtually at the level of standard CAT. The trade-off between total item us-
age and measurement precision could be controlled by the parameter chosen for the
item limit constraint. As the parameter was varied, measurement precision and bias
realized by both GCAT variants interpolated between the extremes represented by
fixed forms testing and a standard CAT algorithm. This predictable dependence of
measurement properties on the limit on total items per group gives reason to expect
that the GCAT can be adjusted to a wide range of requirements arising in assess-
ment practice.
As expected, the constraint on the number of items available per group also in-

fluenced test overlap. Here, the choice of objective function led to a qualitatively
different outcome. While for both objectives, overlap increased when fewer items
were allowed per group, the weighted GCAT produced overlap curves that lay
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Table 2
Quantiles of Computation Time for Solving the Test Assembly Problem

Method Objective 5% 50% 95% 100%

GCAT - 30 Maximin .83 2.25 15.63 64.92
GCAT - 30 Weighted .95 1.18 1.9 2.48
GCAT - 40 Maximin .79 2.18 16.56 67.62
GCAT - 40 Weighted .9 1.11 1.8 2.42
GCAT - 50 Maximin .69 1.89 13.51 60.26
GCAT - 50 Weighted .86 1.05 1.68 2.19

Note. Recorded times include preprocessing, simplex algorithm, and integer optimization.

between those of standard CAT and fixed forms testing, whereas the maximin GCAT
exhibited smallest overlap at extreme proficiency levels and more uniform overlap
across the latent continuum. The increased test overlap of the GCAT, particularly
around the average proficiency levels, however, does not give reason to the usual
concerns with respect to test security and overexposure (e.g., Chang & Ansley, 2003;
Chen, Ankenmann, & Spray, 2003; Revuelta & Ponsoda, 1998) because of the low-
stakes, formative context considered here. In the context of formative assessment
as practiced in VERA, it provides a basis for teacher‘s work with item-level re-
sults. Two different approaches to the linearization of the multiple objective decision
problem inherent in GCAT were considered. The weighted objective function was
found to provide better measurement around the center of the proficiency distribu-
tion and hence seems the objective function of choice when discrimination between
test-takers of medium proficiency levels is desired. As the maximin objective yielded
lowerMSE and bias for more extreme proficiency levels, it would be the better choice
for assessments aimed at detecting individual differences between students in the ex-
tremes. However, the magnitude of the described difference between the objective
functions depended largely on the homogeneity of the tested groups and decreased
with the within-group variance of proficiencies. Hence, if the target population ex-
hibits a high intraclass correlation of proficiencies, the choice of objective function
becomes less important.
The improved adaptation exhibited by the GCAT when the intraclass correlation

was increased highlights a strength of the CAT approach. Other methods that may
be considered for the purpose of limiting the number of items used per class, such
as multistage adaptive testing (MST) designs, would require reoptimization based on
prior knowledge in order to improve adaptation. Still, MST may represent a middle
ground in terms of adaptivity and efficiency and, the requirement of online optimiza-
tion being absent, makes for a viable alternative that may be easier to implement.
With respect to computational requirements, the GCAT using the maximin objec-

tive function posed a greater computational challenge and its implementation based
on GLPK might not conform with the real-time requirement imposed by online test-
ing. Optimization of the weighted objective, however, was much faster. Here, com-
putation times measured on our prototypical implementation would be short enough
for practical application. Still, in contrast to the small computational effort required
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Figure 8. Conditional pairwise overlap between tests, average taken across groups for fixed
forms, GCAT (maximin objective), and CAT, for test lengths of 15 (left), 20 (middle), 25
(right) and ρI = 0 (top), ρI = .5 (bottom).

when optimizing single test forms, the simultaneous optimization of test forms for
a group of test-takers comes at a higher computational expense. For a real-world
application of GCAT, especially with the maximin objective, the use of commer-
cial solvers that are known to outperform the open source GLPK by a large margin
(Mittelmann, 2019) is advisable. The limitations of the present study include the
small size of the item pool that was used in the simulation study and the simple con-
tent constraints that were used. While larger item pools would probably exacerbate
the motivating problems arising from the high number of different items used per
group and low overlap between test forms within the groups, they would also in-
crease the computation times required to solve the test assembly problem. Despite
the progress in mixed integer programming solvers and processor speeds, applying
the GCAT with very large item pools may be infeasible at present. Yet, the feasibil-
ity of GCAT with large item pools and more complex content constraints can only
be determined by empirical studies, preferably with optimized implementations and
efficient solvers. Still, the timing results from the present simulations show that on-
line adaptive assembly of multiple tests is practically feasible, at least with small
to moderate item pool sizes. Integrated into formative assessment programs, GCAT
thus can reconcile item-level analyses of testing results with the efficiency afforded
by adaptive testing. We hope that by providing this option, GCAT will encourage and
facilitate the use of CAT in formative assessment.
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Appendix A

The following figures correspond directly to Figures 2, 3, 4, 5, 7, and 8, differing
only in that they include the full set of values of intraclass correlation ρI used in the
simulation study.

15 20 25

0
0.1

0.2
0.3

0.4
0.5

−2 0 2 −2 0 2 −2 0 2

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

θ

 M
S

E

Method

Fixed Form

GCAT − 30

GCAT − 40

GCAT − 50

CAT

Figure A1. Conditional MSE of fixed forms, GCAT (weighted objective), and CAT, for test
lengths 15, 20, 25 (columns), ρI = .0, .1, .2, .3, .4, .5 (top to bottom).
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Figure A2. Conditional MSE of fixed forms, GCAT (maximin objective), and CAT, for test
lengths 15, 20, 25 (columns), ρI = .0, .1, .2, .3, .4, .5 (top to bottom).
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Figure A3. Conditional bias of fixed forms, GCAT (weighted objective), and CAT, for test
lengths 15, 20, 25 (columns), ρI = .0, .1, .2, .3, .4, .5 (top to bottom).
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Figure A4. Conditional bias of fixed forms, GCAT (maximin objective), and CAT, for test
lengths 15, 20, 25 (columns), ρI = .0, .1, .2, .3, .4, .5 (top to bottom).
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Figure A5. Conditional pairwise overlap between tests, average taken across groups for fixed
forms, GCAT (weighted objective), and CAT, for test lengths of 15 (left), 20 (middle), 25
(right) and ρI = .0, .1, .2, .3, .4, .5 (top to bottom).
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Figure A6. Conditional pairwise overlap between tests, average taken across groups for fixed
forms, GCAT (maximin objective), and CAT, for test lengths of 15 (left), 20 (middle), 25
(right) and ρI = .0, .1, .2, .3, .4, .5 (top to bottom).
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Notes
1Simulation study; the parameters correspond to those of the CAT baseline de-

scribed in detail in the section covering the simulation study. Groups were assembled
from the population randomly.

2zi can be specified as a continuous variable (which is beneficial for optimization),
because as a direct consequence of Equations 12 and 13, it holds that zi ∈ {0, 1}, for
all i.
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