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Abstract

Background: In the context of large-scale educational assessments, the effort

required to code open-ended text responses is considerably more expensive and

time-consuming than the evaluation of multiple-choice responses because it requires

trained personnel and long manual coding sessions.

Aim: Our semi-supervised coding method eco (exploring coding assistant) dynamically

supports human raters by automatically coding a subset of the responses.

Method: We map normalized response texts into a semantic space and cluster

response vectors based on their semantic similarity. Assuming that similar codes rep-

resent semantically similar responses, we propagate codes to responses in optimally

homogeneous clusters. Cluster homogeneity is assessed by strategically querying

informative responses and presenting them to a human rater. Following each manual

coding, the method estimates the code distribution respecting a certainty interval

and assumes a homogeneous distribution if certainty exceeds a predefined threshold.

If a cluster is determined to certainly comprise homogeneous responses, all remaining

responses are coded accordingly automatically. We evaluated the method in a simu-

lation using different data sets.

Results: With an average miscoding of about 3%, the method reduced the manual

coding effort by an average of about 52%.

Conclusion: Combining the advantages of automatic and manual coding produces

considerable coding accuracy and reduces the required manual effort.

K E YWORD S

clustering, eco, effort reduction, exploring coding assistant, semi-automatic coding, support

human raters

1 | INTRODUCTION

Evaluating open-ended text responses is known to be very demand-

ing. It requires that manual coders not only deal with the cognitive

task to comprehend and interpret text (Graesser & Kreuz, 1993;

Kintsch & van Dijk, 1978; Perfetti & Joseph, 2014) but also that they

use an evaluation scheme consistently to ensure reliable and valid

coding. In this paper, we propose a method to support human coding

through natural language processing.

A coding scheme is often created to account for different response

scenarios, whereby coders can reliably code responses by matching them

with possible answers contained within a set of reference texts. However,

human coding decisions can be biased (Bejar, 2012) and objectivity com-

promised (see Klein & El, 2003). Despite these difficulties, open-ended
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items are used in assessments due to the advantages they offer in com-

parison to multiple-choice tasks for certain constructs, including addi-

tional information beyond closed-format tasks (Frederiksen, 1984;

Hancock, 1994; Millis et al., 2007). Open-ended tasks can demand the

activation of higher-order cognitive skills (Hancock, 1994) or reveal

whether testees profoundly understand a text (Rupp et al., 2016). Given

their information-rich nature, open-ended formats are also used in ques-

tionnaires pertaining to fields such as medicine (e.g., Burla et al., 2008;

Huston & Rowan, 1998) and self-regulation (e.g., Anthony et al., 2013).

Human raters are typically considered the gold standard for

coding open-ended text responses because they can provide the

necessary understanding to comprehend, interpret, and, ultimately,

rate such texts. Nonetheless, likely because of their potential to

save time and effort, as well as to improve coding consistency,

researchers have increasingly developed automatic coding methods

(see Burrows et al., 2015, for a somewhat outdated overview), which, in

comparison to humans, are incapable of deeply understanding texts.

Instead, these methods can code texts automatically by recognizing pat-

terns. Various systems have already been developed to automatically and

semi-automatically code text responses to assessment tasks (see Basu

et al., 2013; Horbach et al., 2014; Leacock & Chodorow, 2003;

Mieskes & Pado, 2018; Zehner et al., 2016; Zesch, 2015). While fully

automated methods require a complete pre-coded data set to train a

model, partially automated systems only code a subset of responses in a

dataset automatically, with other responses coded manually. With few

exceptions (e.g. Cai et al., 2019; Horbach & Pinkal, 2018), these methods

are mostly static, meaning that a fixed amount of manually coded data is

defined as training data to initiate the automatic coding process, but there

is no dynamic interaction with human coders.

To code responses automatically, the system must collect infor-

mation about the response universe, including the relevant semantics

and the codes assigned. However, it remains unsolved how much

information is required to make a coding decision with a minimal

degree of certainty. This produces what is commonly described as an

exploration-exploitation dilemma.

More formally, this refers to the general decision problem of

whether (i) to apply an action from a sequence of finite actions for

choosing the best currently available option given the current

information (i.e., the option known to provide the greatest benefit

for exploitation) or (ii) to explore new options that may provide

greater benefit than the best currently known option. If no new

option provides additional benefit, the latter action represents a

waste of resources. This fundamental decision problem affects

both humans (Wilson et al., 2014) and machines, especially in reinforce-

ment learning (Kaelbling et al., 1996). Translated to the present paper's

focus, this corresponds to the question: How many responses must be

coded manually in order to obtain enough information for coding other

responses automatically (with a high level of certainty), and which

responses provide sufficient information in order to require the smallest

possible number of manually coded responses?

2 | RESEARCH GOALS

To answer this question, we have developed exploring coding assistant

(eco)—a semi-automatic method—that interactively and dynamically sup-

ports human coders in the manual coding process. The mechanism recog-

nizes responses that can be coded automatically with a high degree of

certainty and codes them in the background. These responses demon-

strate substantial semantic similarity to responses that have already been

coded manually, reducing the effort required from human coders. The

assistant systematically queries responses for manual coding, which itera-

tively generates a training data set that enables the automatic assistant to

train a coding model while automatically coding other responses in the

background. The decision to execute the automatic coding process is

made upon reaching a minimum level of statistical certainty. Thus, the

method does not require a pre-coded data set and can be applied on the

fly during the manual coding process. To evaluate the method, we simu-

lated it using various pre-labelled data sets (including partial credit scores).

3 | SEMI-AUTOMATIC METHOD FOR
CODING TEXT RESPONSES

This section describes the different steps involved in the proposed

semi-automatic coding process with the aim of supporting the

human rater. Figure 1 illustrates the process. Based on a pre-

trained vector representation of semantics, (I), the open-ended text

F IGURE 1 Flowchart of the semi-automatic coding procedure
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responses are mapped into a semantic space across n dimensions (II). The

response vectors are clustered based on their semantic similarity (III),

implying the following assumptions:

1. Similar responses that demonstrate considerable semantic similar-

ity will be assigned to the same cluster, and

2. semantically similar responses can be assigned to the same code.

As a result from these assumptions, the next task is to explore

the clusters regarding the responses' code distribution and check for

their homogeneity.

Assumptions are verified for each cluster by systematically querying

responses from a cluster (IV) and presenting them to a human in the loop

(V). Thereupon, the code distribution in the cluster is estimated using a

critical interval. If the code distribution in a cluster is estimated to be

homogeneous according to a predefined certainty threshold, all remaining

responses in the cluster are automatically coded (VI) with the cluster's

dominant code. Responses from heterogeneous clusters continue to be

coded manually. Thus, the method supports the human rater during the

process if the condition of high similarities between the responses leading

to homogeneous clusters, allows it. The next sections of this paper detail

the individual steps.

3.1 | Building a semantic space

To apply quantitative methods to texts that initially demonstrate qual-

itative properties in the form of unstructured information, these prop-

erties must be converted into quantitative properties. Semantic

spaces enable numerical representations of a word's semantics and

allow for mathematical calculations regarding their meaning

(Deerwester et al., 1990; see Mikolov, Le, et al., 2013; Pennington

et al., 2014). Semantic spaces represent words as n-dimensional vec-

tors. A word's original semantics cannot be directly reconstructed

with the vector representation but can be measured indirectly via the

cosine similarity to another word vector.

The similarity of two vectors sim a
!
, b
!� �

with n dimensions can be

measured by their angle θ, where words with a similar meaning—for

example, synonyms—showing a small angle. The number of dimen-

sions is often specified to be 300 (see Landauer et al., 1998; Mikolov,

Chen, et al., 2013; Pennington et al., 2014).

sim a
!
, b
!� �

¼ cos θð Þ¼ a
!� b!

a
!��� ��� b

!��� ���¼
Pn
i¼1

aibi
ffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

a2i

s ffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

b2i

s : ð1Þ

The cosine similarity can take values in a range between

�1 < cos θð Þ<1. A similarity of cos θð Þ¼1 indicates identical semantics

of two words, for instance, synonyms, and a similarity of cos θð Þ¼0

indicates semantically dissimilar words.

In recent decades, different methods for building semantic spaces

have been established (see Deerwester et al., 1990; Devlin et al., 2019;

Mikolov, Chen, et al., 2013; Pennington et al., 2014). In general, these

processes are based on the distribution of words and the assumption that

words in a similar context also share a similar meaning. With respect to

the distributional hypothesis, words are considered similar when they

demonstrate a similar distribution: “The distribution of an element will be

understood as the sum of all its environments” (Harris, 1954, p. 146).

From a technical perspective, a word's environment or context is deter-

mined by its co-occurrences, which can include all words in the document

(Deerwester et al., 1990) or all words in a particular window around the

target word (Mikolov, Chen, et al., 2013). In the context of newer

methods, they are also known as word embeddings.

For the simulations in the present study, we used semantic

spaces, built with word2vec (Mikolov, Chen, et al., 2013), which does

not consider word order, minimizing syntactic variance. The German

vector space model was trained with a sample of 500,000 documents

from the German Wikipedia using a window of five words, consider-

ing the two words both before and after the target word. word2vec is

based on neural nets and can be distinguished as two separate

models, which iteratively train weights from the input. While the Con-

tinuous Bag of Words Model is trained to predict the target word

based on context. Skip-gram is used to predict the context based on

the target word. The resulting parameters from the model are used as

word embeddings or semantic spaces. We extracted the weights of

the Skip-gram model to represent the word vectors in 300 dimensions.

The word embedding comprised 1,497,302 types (i.e., unique words

and numbers).

For the datasets, including English text, we used a publicly avail-

able pre-trained model in English featuring 100 dimensions and a win-

dow of five words (Yamada et al., 2020). We chose a model with fewer

dimensions to show that ecoworks under different conditions, including a

different language as well as another dimensionality, to test minimal

requirements. Furthermore, the number of dimensions plays a subordi-

nate role when aggregating multiple vectors (Figure 2b) because informa-

tion about single words is negligible. When measuring the relationship

between two word representations, semantic spaces with more dimen-

sions are often more accurate (Mikolov, Chen, et al., 2013).

3.2 | Normalization

The texts used to build the semantic space and the text responses

were normalized by tokenization, lowercasing, and punctuation

removal. Pre-processing text is common in many natural language pro-

cessing methods and offers the advantage of reducing linguistic vari-

ability in texts. These steps are illustrated in Figure 2a.

3.3 | Computing response vectors

Given word embeddings, represent single words, it is necessary to

aggregate word vectors to obtain a response vector by averaging all

word vectors as a bag-of-words (Figure 2b). This means that syntactical

order is ignored.

ANDERSEN ET AL. 843
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3.4 | Clustering

Text responses refer to their item. Since all students are responding

to the same task, the responses should share similarities regarding the

content. With this assumption in place, we cluster the text responses

using their vector representations via hierarchical clustering.

Documents or texts can be grouped based on their semantics

(see Aggarwal & Zhai, 2012; Willett, 1988). In the large-scale context,

hierarchical clustering using cosine-based distance matrices and Ward's

method as linkage criterion (Ward Jr, 1963; Zehner et al., 2016), or

k-Means (Zesch, 2015) has proven to be effective. While k-means fea-

tures a stochastic term that can provide different results with repeated

use, hierarchical methods deterministically reproduce the same results

depending on the selected linkage criterion, which determines how data

points are merged into clusters. Centroid-based clustering methods offer

the advantage of a centroid vector that can be generated by aggregating

all response vectors. The response with the highest cosine similarity to

the centroid vector represents the cluster's prototypical response. To use

this information systematically, we have chosen a non-stochastic

centroid-based hierarchical clustering method with Ward's method (Ward

Jr, 1963).

3.5 | Explore versus exploit

Semantically similar responses should be assigned to the same code

and form an optimally homogeneous cluster with respect to their

codes. Given that the proper code distributions in the clusters are

unknown, the assumption of homogeneity must be tested for each

cluster. Only the coding of one human rater is required here.

The human rater is successively presented with responses from a

given cluster, which allows us to estimate the code distributions (and

their homogeneity) by examining a fraction of responses, the

necessary amount of responses to exceed the certainty threshold,

considering a critical interval. If a predefined certainty threshold T

is reached, we anticipate that the whole cluster distribution is

optimally homogeneous and, accordingly, code the remaining responses

automatically.

3.6 | Uncertainty and confidence

In order to answer the questions of how many text responses inside a

cluster are expected to be labelled as, for example, correct or incorrect,

and how high the certainty is that the sampled distribution generalizes

to all responses inside the cluster appropriately, the cluster's code dis-

tribution is estimated using a normal approximated critical interval

(Cochran, 1991).

The number of responses with a particular code X is estimated by

the number of the queried responses containing code X, x, and the

number of all queried responses n.

p Xð Þ¼ x
n
: ð2Þ

The critical interval is defined by

p Xð Þ� t

ffiffiffiffiffiffiffiffiffiffiffiffi
1� n

N

r ffiffiffiffiffiffiffiffiffiffiffi
pq

n�1

r
þ 1
2n

� �
, ð3Þ

where t indicates the normal deviate (t¼1:96, with a type-I-risk of

α¼ :05), N indicates the number of all responses in a cluster and n

indicates the number of queried responses, whereby p¼ x=n and

q¼1�p. The continuity correction is defined by 1
2n (see

Cochran, 1991). The critical interval (CI) decreases steadily with each

coded response until all responses from a cluster are coded manually.

Thus, the certainty is represented by the lower bound of the CI. If cer-

tainty exceeds the predefined threshold T, we can assume that the

entire cluster is optimally homogeneous and propagate automatic

coding. The effort reduction, ER, is operationalized by the number of

automatic codes in relation to the number of responses in a dataset.

To see how this works, it is worth considering some examples:

F IGURE 2 Pre-processing and vector representation of a text response

844 ANDERSEN ET AL.
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Scenario A: A cluster comprises N¼20 responses, coded as cor-

rect, with a perfectly homogeneous code distribution. A total of x¼5

answers are queried and presented to the human rater, who codes

the responses as correct. The estimated proportion of correct

responses in the cluster is p correctð Þ¼1:00;95%CI :90, 1:00½ �.
Because the lower confidence level does not exceed the predefined

threshold of T¼0:90, the cluster is further explored. After querying

and coding another correct response, the proportion of correct

responses is estimated with p correctð Þ¼1:00;95%CI :92, 1:00½ �.
Given that the threshold is now exceeded, the assumption that the

cluster is optimally homogeneous can be confirmed, and all additional

14 responses in the cluster are automatically coded according to the

dominant coding, in this case, correct, saving ER¼70% of the coding

effort.

Scenario B: Seven responses are queried from a heterogeneous

cluster featuring a total of 20 responses. Four of the seven responses

are coded as correct. The proportion of responses in the cluster is

estimated to be p correctð Þ¼0:57;95%CI 0:18, 0:96½ � and

p incorrectð Þ¼0:43;95%CI 0:04, 0:82½ �. The estimated code distribu-

tion indicates insufficient homogeneity for automatic coding. Explora-

tion will continue until the certainty value is exceeded or all responses

have been coded manually.

The definition of T also determines the minimum number of

codes required to exceed the threshold. With a lower T, the required

number of manual codings decrease, which means that the estimates

are potentially more error-prone.

For dichotomous coding, the distribution of only one code needs

to be estimated since the other shows the reverse distribution. Yet,

for technical reasons, each code distribution is estimated so that the

method can be extended to multinomial and ordinal scores with more

than two codes, which require all coding distributions to be estimated.

3.7 | Estimating the number of clusters

We aim for relatively large clusters because we want to reduce as much

coding effort as possible. Cluster homogeneity increases as the number

of clusters increases. They demonstrate perfect homogeneity if the

number of clusters corresponds to the number of responses because

each response is assigned to its own cluster, which precludes an auto-

matic coding process. Consequently, we must solve the optimization

problem of there being two conflicting target functions. That is, clusters

should reach the smallest possible size to achieve optimal homogeneity,

but they also should be sufficiently large to enable exploration.

There is no perfect solution to this problem because it depends on

the user's expectations of the effort reduction and the accepted miscod-

ing rate. If users want to reduce coding effort as much as possible, a small

k is needed, more likely resulting in larger and more heterogeneous

clusters and increasing the number of possible incorrect codings.

Additionally, the threshold value relates directly to the effort

reduction expectation. Even in a maximally homogeneous cluster, a

minimum number of manually coded responses are required to exceed

the threshold.

In Scenario A, six responses must be queried from a perfectly

homogeneous cluster of 20 responses to exceed the threshold of

T¼ :90, allowing a maximum of 14 responses to be coded automati-

cally. Meanwhile, a threshold of T¼ :50 requires only three manual

codings to exceed the certainty threshold for a homogeneous cluster.

Although this reduces the overall coding effort, it may also generate

more incorrect codings because smaller sample sizes frequently result

in heterogeneous clusters being incorrectly identified as

homogeneous.

Using the hierarchical cluster structure and assuming a certain

value of k enables determination of the maximum effort reduction for

each k in the range 1≤ k ≤N, assuming that all clusters demonstrate

perfect homogeneity. Thus, the required k can be determined by

working backwards.

For varying items and the same expected effort reduction, k dif-

fers because the item responses vary in complexity. This is reflected

in different hierarchical cluster structures. By determining k back-

wards, we do not have to set a fixed generic value of k; instead, we

can set it as a function of the effort reduction expectation.

3.8 | Query strategies

Systematically sampling data can reduce the amount of data needed

to train a model while simultaneously increasing the model's perfor-

mance (see Lewis & Gale, 1994; Settles, 2009), as has been demon-

strated in the context of, for example, short answer scoring

(Horbach & Palmer, 2016). Moreover, during unsupervised learning,

patterns of response characteristics and their unseen ratings can

become visible. For example, if certain responses are grouped into a

cluster, the responses share similar attributes, represented by the pro-

totypical response, with the highest cosine similarity to the centroid

vector. Thus, the similarity of the response vector to the centroid vec-

tor contains similar information to the word frequency (see Salton &

Buckley, 1988) which also affects the similarity. If a response contains

various words frequently used in the cluster, it shows a smaller distance

to the centroid. This information enables the development of specifying

strategies for sampling responses in a semantic space throughout the pro-

cess to identify the most informative response in the cluster. In this con-

text, the most relevant information is that which allows for earlier

recognition of whether or not a cluster is heterogeneous, avoiding mis-

coding. Given the prototypical response could be a misleading indicator

for this purpose, we tested three different sampling strategies: (1) a

random-based strategy and two distance-based strategies, (2) with prefer-

ential querying of prototypical responses, near centroid, and (3) preferential

querying of atypical responses, far from centroid.

3.9 | Data sets

We employed different data sets to tune and evaluate the method.

The data from the 2012 programme for international student assess-

ment (PISA) assessment (OECD, 2013) were used solely to optimize

ANDERSEN ET AL. 845
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the method's parameters. Next, we describe the method. Finally, we

report simulations for evaluating the method and chosen parameter

values, for which the other three data sets were used.

3.9.1 | Programme for international student
assessment 2012

For hyperparameter optimization (i.e., to estimate the optimal number

of clusters, the best sampling strategy and the best threshold for auto-

matic coding), we used 10 items from the German PISA 2012

(OECD, 2013), which was previously used for automatic coding

(Zehner et al., 2016). These items represent a cross-sectional mea-

surement of various competencies (reading, science and mathematics;

see Zehner et al., 2016), which is reflected in the variation in response

characteristics. This international assessment is conducted every

3 years and tests 15-year old students in mathematics, science, and

reading literacy. From the selected 10 items, eight items assess read-

ing, one item assesses mathematical, and one item assesses science

literacy. All 10 items are coded dichotomously as correct/incorrect.

Assessment data typically contains empty responses. For the purpose

of comparability empty responses were removed.

3.9.2 | Programme for international student
assessment 2015

This data set includes German short text responses from PISA 2015

(OECD, 2017) stemming from 15-year-old students from German

schools. The 38 reading literacy items are divided into three distinct

item types with different characteristics in terms of, for example, com-

plexity and median response length (Table 1). Access and Retrieve

tasks are typically short items. In most cases, this means that parts of

the text have to be reproduced from the read text (e.g., recall animal

species from a given text; Andersen & Zehner, 2021). In integrate and

interpret tasks, components of the text must be combined or inter-

preted, and reflect and evaluate tasks require that students must

reflect beyond the text base. Some items feature dichotomous coding

assignments (correct/incorrect), and some feature three-level ordinal

scaled scoring. The advantages of data from established large-scale

assessments are that the measurement instruments have been tested

and optimized using various high-quality criteria (Berliner, 2020). We

also removed empty responses.

3.9.3 | Powergrading

This English-language data set collected by (Basu et al., 2013) includes

10 items, resulting in a total of n = 6980 short responses. The items

include questions from the United States Citizenship Exam. Responses

to these questions were collected via the crowdsourcing platform

Amazon Mechanical Turk. Responses are comparatively short and

evoke very low-linguistic variance, comparable to items from the PISA

access and retrieve item type, in terms of linguistic aspects. However,

items do not contain reading texts with information. Three raters con-

ducted dichotomous coding.

3.9.4 | Automated student assessment prize

The data set of 10 items, also in English, was made publicly available dur-

ing a competition on the data science platform Kaggle. The automated

student assessment prize (ASAP; Kaggle, 2012) was intended to encour-

age the development of new scoring methods. The responses are longer

than those pertaining to the other data sets. The items targeted critical

thinking, and the ordinally scaled codes included three or four scores

points per item. Each item was scored by two raters.

4 | SIMULATIONS

As the target criteria of the presented method, we report the percent-

age of reduced effort, the agreement between human and machine

for automatically coded responses in terms of quadratic weighted

kappa (Cohen, 1960, 1968; Fleiss, 1971) and the total accuracy of all

responses to determine the effective coding accuracy of the method.

The general accuracy includes the proportions of both human coding

and automatic coding and represents, in relation to the effort

TABLE 1 Data sets

Data set Items n Tokens (median) Raters Language Usage

PISA ‘12 10 37,072 12 1 German Train

PISA ‘15 access and retrieve 7 7681 9 1 German Test

PISA ‘15 integrate and interpret 14 14,461 13 1 German Test

PISA ‘15 reflect and evaluate 17 17,069 19 1 German Test

Powergrading 10 6980 3 3 English Test

ASAP 10 17,207 40 2 English Test

Note: The table shows the data sets used to evaluate the method with their corresponding numbers of items and total responses n, the median number of

tokens (i.e., words and numbers) in the responses, the number of raters involved in the coding process, the data set language and if it was used for

hyperparameter tuning or evaluation.

Abbreviations: ASAP, automated student assessment prize; PISA, programme for international student assessment.
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reduction ER, the overall success of the method. It is important to

note here that all manually coded responses are considered to be

coded correctly, which corresponds to a general accuracy of 100% for

a fully manually coded dataset.

Additionally, for the PG and ASAP datasets, which were coded by

multiple human raters, the human raters' agreement was reported as the

human–human agreement κHH. As one simulation was performed for

each rater, in addition, the agreement κHS between one automatically

supported human coder and the other human coders was calculated

as well as the agreement κSS between all raters that were supported

by an automatic assistant. Kappa can have values between �1≤ κ ≤1,

while a value of κ¼1 means perfect coder agreement, and a value of

κ¼0 describes random code assignment in terms of the prior distribu-

tion (see Landis & Koch, 1977, for a more detailed segmentation).

4.1 | Simulation for hyperparameter optimization
using German PISA 2012 data

For the semi-automatic method, two important parameters must be

defined in advance. First, there is the optimal number of clusters k for

grouping the response vectors, and second, the certainty threshold

that must be reached for automatic coding to be executed. Addition-

ally, as the query strategies have not been compared empirically yet,

the strategy had to be defined as well. Since we could not expect

these variables to be fully independent, we performed grid search to

find the optimal combination of hyperparameters, in which every pos-

sible combination of parameter values was simulated for each item.

The results were then averaged across items since we wanted to test

the parameters' suitability for a generic application of the method,

independent of specific items and response characteristics. In practical

use, grid search could be applied to any labelled dataset for tailoring

the hyperparameter values.

A simulation of the method was performed on the German PISA

2012 data. For each of the 10 items, six certainty thresholds

Tϵ 0:70, 0:75, 0:80, 0:85, 0:09, 0:95f g and eight levels of expected

maximum effort reduction MERϵ{10%, 20%, 30%, 40%, 50%, 60%,

70%, 80%, 90%} were tested to find the optimal k value. Furthermore,

three different query strategies were tested (random, near centroid, far

from centroid). This way, we performed a total of 1620 simulations to

find the parameters that allowed the optimal application across

multiple items. So, for each of the 10 items, this corresponded to

162 results, and there were 10 results for each parameter combina-

tion, which were aggregated across items for choosing optimal generic

hyperparameters. For doing so, we measured the effort reduction and

automatic coding agreement as optimization criteria.

4.2 | Simulations for evaluating the
semi-automatic coding method on other data sets

To select the optimal parameter values, the 162 results were sifted

and reduced step by step on the basis of exploratively defined criteria.

After an initial review of the data, a minimum reached effort reduction

was set to ER>50%, which was the case for 38 of the 162 results.

We took the case with the highest automatic coding agreement. Thus,

the parameters were defined with T¼0:85, MER¼0:80, and a query

strategy preferring responses with the highest distance to the cluster

centroid, which results in an average general accuracy of 96.83% and

an average coding effort reduction of 53.27%. The difference

between the maximum and the real effort reduction is due to the fact

that the MER requires perfect homogeneous clusters, which are rarely

present in real-world data.

Effort reduction and general accuracy depend on the respective

parameters and the item complexity. For example, the effort reduction

takes a wide range between 2:03%< ER<89:07%, while the general

accuracy ranges between 83:66%<Accuracy <100% regarding all sim-

ulation results.

The specified parameters were then used to simulate the support

provided by the automatic assistant to the rater in the other three

datasets. To that end, a simulation was performed for each rater per

item. All results are presented in detail for each item in Appendix A

(Tables A1–A5).

The method provides different effort reductions and accuracies

(Table 2). The largest effort reduction was achieved for the PISA data

with the item type access and retrieve. Here, a total of 66.98% of the

effort could be saved on average, whereby the range covers a similar

area as with the PG items. There, 39.11% of the effort could be saved

for the poorest performing item and 80.23% for the highest perform-

ing item. In the data set with the longest responses and polytomous

coding (ASAP), only 19.63% of the coding effort could be saved on

average, with no automatic coding performed on one item, resulting

TABLE 2 Effort reduction and
accuracy

Effort reduction (ER) in % General accuracy in %

Data set n Mean Min Max Mean Min Max

PISA ‘15 access and retrieve 7 66.98 37.85 79.86 97.88 94.77 100.00

PISA ‘15 integrate and interpret 14 58.73 21.65 80.04 97.30 92.98 99.55

PISA ‘15 reflect and evaluate 17 40.04 15.26 71.00 94.47 90.42 96.93

Powergrading 10 73.57 39.11 80.23 99.12 95.70 100.00

ASAP 10 19.63 0.00 53.09 95.91 91.94 100.00

Note: The table shows the number of items in the data set (n), the effort reductions (ER) and general

accuracy (including manual and automatic codings).
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in 100% general accuracy. In the power grading dataset, responses of

three items were also coded 100% correctly (items 1/3/5; see

Appendix), although more than 79% were machine coded for all three.

To investigate whether the different results, general accuracy and

effort reduction, were statistically related to the data set, an ANOVA

was calculated for both measurements. The effort reductions differed

significantly by data set F 4, 83ð Þ¼48:34, p<0:001, η2 ¼0:70 as did

the general accuracy, F 4, 83ð Þ¼22:71, p<0:001, η2 ¼0:52, suggesting

item- and sample-related differences.

5 | DISCUSSION

Depending on the item type and the related responses, eco was able

to reduce a large proportion of coding effort, with only a marginal

number of miscodes on average. For items with poorer automatic

coding, the automatic assistant only accepts a limited number of

errors if the distribution is heterogeneous (see ASAP, Item 1), leading

to further manual codings or even a complete manual coding process

(see ASAP, Item 2). The differences in effort savings and accuracies

differ statistically between the data sets, with the difference in gen-

eral accuracy in a clear range between 90 and 100%, showing that the

method accurately estimates the certainty marker for potential auto-

matic codings. For item 2 (ASAP), no response was automatically

coded, as there was insufficient statistical confidence. This demon-

strates the importance of accuracy over effort reduction. The

responses of this item contain the longest responses on average with

four coding levels. Short responses and, therefore, the least complex

ones, were coded best (see PG, Item 4). That means these contain the

smallest number of miscoding and the largest proportion of effort

reduction. Whereby the complexity can be considered low not only

due to the short length of responses but also because of the few cod-

ing levels (i.e., dichotomous scores). Accordingly, we identified two

main problems that complicated the automatic coding of responses: a

higher number of coding levels and long text responses.

The use of several coding levels create more (spatial) boundaries

between the responses in the hyperdimensional semantic space, mak-

ing it more difficult to distinguish between them during the clustering

process. As can be seen from the results, this was not only a potential

source of error for automatic coding but also human coding. The

human coding of the critical item 2 (ASAP), for example, had an inter-

rater reliability of only IRR¼0:80. For item 3 (ASAP), the agreement

was even lower with IRR¼0:60, which was also reflected in the low-

performance rate of the automatic coding due to low-statistical cer-

tainty. In contrast, for example, item 1 (PG), which contains only three

tokens per response (median), shows a 100% total coding agreement

with ER¼80:09%: The ER even exceeds the MER, because of its high

number of identical responses. Related to this was the content of the

responses, which affected their representation in the semantic space

and thus also their assignment to the respective clusters. This sug-

gests an influence of longer responses as they may have a different

ratio of relevant to irrelevant words. The influence of linguistic fea-

tures on coding success can be covered by further research and

requires further analysis. In the following, we discuss known issues

and how they influence coding success for text responses.

One factor that particularly affects longer responses is the use of

bag-of-words and the resulting loss of syntactic information. Although

most information is represented by semantics (Landauer, 2002), an

optimization that also considers word order might produce more

accurate patterns but requires more training examples due to the

increasing linguistic variety of the text and the number of word com-

bination sto respond to a particular task. Especially syntactical organi-

zation differs across languages (Evans & Levinson, 2009). Another

implied restriction concerns negations. By neglecting sentence struc-

ture, a negation loses the reference to the relevant word. For exam-

ple, the response, ‘He did not tell her to keep the secret’ would be

treated in the same way as the response, ‘He did tell her not to keep

the secret.’ Although both sentences contain the same words, the dif-

ferential use of negation significantly changes the sentence's meaning.

This difference in meaning can be relativized in the assessment con-

text because a specific condition is not usually described contrarily

using a negation.

The method developed was designed for nominally coded short

responses. However, the method has been demonstrated to work

with ordinally scaled codes that are methodologically downscaled to a

nominal scale. A typical scoring scheme for ordinal-scaled items is that

the naming of a particular term is scored with one point while a nam-

ing with an additional argument is scored with two points, although

the level of detail of the argument can also be subject to an additional

gradation. Thus, the responses contain different intersections of informa-

tion. A decomposition of the response into different information units or

n-grams combined with a rule-learner could better distinguish between

the graduated differences and detect essential sub-sentence structures in

long responses. As the decomposition of responses produces further

problems, additional techniques would need to be considered. Consider,

for example, a decomposition of the response ‘John was worried about

his dog. He hasn't seen it for a while.’ The pronoun (he) in the second sen-

tence is referring to the name John in the first sentence. After a sentence

decomposition, the information concerning the reference would be lost

(see Bexte et al., 2021; Mitkov, 2002). An additional focus on corefer-

ences could mitigate this information loss by referring pronouns to the

relevant entity, meaning that additional rules (e.g. Hobbs, 1978) or trans-

formers (e.g. Joshi et al., 2020) could be used to reconstruct this corefer-

ence automatically.

The assistant crudely balances effort reduction against potential

miscodings by predefining parameters such as the number of clusters

and the certainty threshold. Pre-processing steps may have addition-

ally impacted the weighting of the two target variables. For example,

stemming (reducing a word to its stem) reduces the linguistic variabil-

ity of a text, promoting generalizability to prevent overfitting but

removes morphological information. The effect of different pre-

processing steps on the results of coding should be examined in more

detail.

Applying the method in an authentic assessment scenario also pro-

vides various design options. For example, implementing the method in

an environment with a user interface (e.g., Andersen & Zehner, 2021)
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allows for the inclusion of additional concepts, such as how responses are

displayed to the rater, whether as single responses or as multiple

responses featuring a code suggestion requiring the rater's approval. Fur-

thermore, the decision to perform automatic coding depends on whether

a certain estimated proportion of codes exceeds the certainty threshold.

This responsibility could be given to the human rater to decrease the con-

trol of the assistant and allow for increased flexibility.

Human ratings are considered the gold standard and used as a

benchmark for the evaluation of automatic coding approaches (see Shaw

et al., 2020). In applications where human raters are integrated into a

loop, like in the presented method, human raters are sometimes also

called Oracle, which trivializes human coding errors at least from a philo-

sophical, if not even from an empirical point of view. However, codings

can also vary between human raters, which should be taken into account

when evaluating an automatic coding system. Data sets are often only

rated by one rater, and that coding serves to train and test the method

simultaneously, with the predicted coding compared to the true coding.

Limited agreement between the two values can indicate a failed coding

strategy or the failure to code a critical item. Automatic and semi-

automatic methods can be used to detect these systematic coding diffi-

culties and revise items and coding guidelines. To measure a coding sys-

tem, two independent human ratings are indispensable because they

allow comparisons between automatic and single-human coding and cod-

ings by two or more human coders.

Language diversity is critical for a broad multilingual application.

Using the same method in different languages can lead to different

results because aspects such as pre-processing affect the responses

differently. Important factors could include response length and vari-

ance (Horbach & Zesch, 2019). Long responses usually contain more

semantic information but can also contain more noise, that is, words

that do not contain coding-relevant information. Linguistic variability

(see Horbach & Zesch, 2019) can affect a response's vector represen-

tation, producing heterogeneous clusters and degrading the coding

system. Languages also differ in their information densities (Coupé

et al., 2019; Pellegrino et al., 2011), meaning different languages use

different numbers of syllables to communicate the same amount of

information. Normalization steps, such as stemming or removing stop

words (semantically irrelevant words), could be used to develop a

cross-language method and minimize linguistic variability. This

involves providing stop words in predefined lists of varying length,

depending on the target language. If a method is planned to be

applied across languages, sufficient testing is critical because compar-

ing results, especially at the international level, as in the case of PISA,

can impact future policy decisions (Ertl, 2006).

6 | CONCLUSION

For practical implementation, eco was designed to be applicable

as simply as possible. The assistant cooperates with the human

rater to reduce coding effort. By pre-selecting responses for the

rater, eco uses the continuously gathered coding information to

estimate the chance of a successful automatic coding process and

applies automatic coding if the certainty exceeds a predefined

threshold.

After listing potential issues and features that were not consid-

ered in this basic approach, improvements can be expected, particu-

larly regarding coding accuracy, where the method will consider more

detailed linguistic features. The hyperparameter selection can be lim-

ited to the choice of certainty threshold and the number of clusters,

which simplifies a practical realization. It could be shown that with

general parameter settings (see simulation two), sufficient results can

be achieved over several tasks regarding effort reduction and the

accuracy of the automatic coding. The dependence of the cluster

number on the threshold and the use of a general clustering method

(across all items) were tested and can be assumed as a default value

for an application with the potential for individual optimization. Opti-

mization of the parameters based on older datasets of a specific item

to train the assistant for the coding of a new dataset of the same item

is also conceivable and could lead to better results.
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APPENDIX A

TABLE A1 PISA ‘15 access and retrieve simulation results

Item n Codes Median tokens Coverage in % ER in % General Acc. In % κAC

R227Q06 1132 2 16 78.55 79.86 98.85 0.79

R420Q02 1144 2 8 96.34 77.62 98.95 0.89

R420Q09 1144 2 1 99.18 79.81 100.00 1.00

R442Q02 1005 2 11 86.18 69.35 96.72 0.81

R455Q03 1164 2 5 86.49 73.97 98.97 0.93

R460Q01 1059 2 19 87.44 50.42 96.88 0.77

R466Q02 1033 2 14 84.67 37.85 94.77 0.61

Note: The tables show the simulation results per item and rater, the relative coverage of the tokens in the semantic space and the proportion of

automatically coded responses ER, the proportion of correctly coded responses (general accuracy; including manual and automatic codes), and the

agreement between the automatically predicted codes and the true codes κAC.

TABLE A2 PISA ‘15 integrate and interpret simulation results

Item n Codes Median tokens Coverage in % ER in % General Acc. In % κAC

R055Q03 1077 3 11 90.95 64.25 98.14 0.93

R055Q05 1040 2 15 91.59 53.85 96.54 0.47

R102Q04 926 2 18 89.87 69.11 97.95 0.94

R102Q05 1090 2 2 69.23 74.22 99.17 0.98

R406Q01 1063 2 17 92.41 60.77 96.8 0.67

R406Q02 910 2 13.5 91.17 21.65 98.57 0.58

R406Q05 1038 2 13 92.33 55.20 97.98 0.78

R412Q08 783 2 25 92.88 43.81 92.98 0.67

R420Q10 1033 3 23 85.08 67.96 97.48 0.74

R432Q01 1112 2 2 97.07 80.04 99.55 0.95

R437Q07 830 2 15 90.80 43.98 94.34 0.00a

R442Q03 960 2 13 82.45 49.58 97.40 0.73

Note: The tables show the simulation results per item and rater, the relative coverage of the tokens in the semantic space and the proportion of

automatically coded responses ER, the proportion of correctly coded responses (general accuracy; including manual and automatic codes), and the

agreement between the automatically predicted codes and the true codes κAC.
aDue to uniform automatic coding, the kappa value cannot objectively reflect the agreement, since kappa results in 0, even with high accuracy.
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TABLE A3 PISA ‘15 reflect and evaluate simulation results

Item n Codes Median tokens Coverage in % ER in % General Acc. In % κAC

R055Q02 996 2 20 90.71 45.88 92.87 0.40

R067Q04 1096 3 29 88.24 19.53 94.43 0.48

R067Q05 1089 3 30 90.20 34.16 95.04 0.34

R111Q02B 995 3 24 89.44 27.14 94.77 0.57

R111Q06 966 3 22 89.10 26.81 92.86 0.16

R219Q02 1045 2 20 88.58 56.65 95.31 0.22

R227Q03 1003 2 12 89.63 58.03 95.71 0.73

R404Q10A 977 2 25 88.59 45.96 92.32 0.62

R404Q10B 944 2 26 88.56 28.28 93.75 0.53

R420Q06 970 2 19 88.53 15.26 94.74 0.17

R432Q05 1021 2 16 90.49 48.29 94.61 0.46

R442Q05 1002 2 14 88.49 33.33 90.42 0.36

R442Q06 695 2 25 88.32 44.32 95.11 0.00a

R446Q06 1107 2 18 88.96 71.00 96.93 0.81

R453Q04 1026 2 20 91.82 34.99 95.91 0.25

R453Q06 1049 2 12 88.35 59.01 96.66 0.45

R455Q02 1088 2 13 92.08 32.08 94.49 0.24

Note: The table shows the simulation results per item and rater, the relative coverage of the tokens in the semantic space and the proportion of

automatically coded responses ER, the proportion of correctly coded responses (general accuracy; including manual and automatic codes), and the

agreement between the automatically predicted codes and the true codes κAC.
aDue to uniform automatic coding, the kappa value cannot objectively reflect the agreement, since kappa results in 0, even with high accuracy.

TABLE A4 Powergrading simulation results

Item n Codes Median tokens Cove-rage in % Rater κHH κHS κSS ER in % General Acc. In % κAC

1 698 2 3 99.83 R1 0.99 0.99 0.99 80.09 100.00 0.00a

1 698 2 3 99.83 R2 0.99 0.99 0.99 80.09 100.00 0.00a

1 698 2 3 99.83 R3 0.99 0.99 0.99 80.09 100.00 0.00a

2 698 2 3 99.73 R1 0.95 0.95 0.95 79.94 100.00 1.00

2 698 2 3 99.73 R2 0.95 0.95 0.95 80.23 100.00 1.00

2 698 2 3 99.73 R3 0.95 0.95 0.95 79.66 100.00 1.00

3 698 2 7 99.35 R1 0.57 0.53 0.57 56.45 96.99 0.51

3 698 2 7 99.35 R2 0.57 0.52 0.57 52.44 96.42 0.46

3 698 2 7 99.35 R3 0.57 0.56 0.57 39.11 95.70 0.55

4 698 2 1 98.65 R1 0.86 0.85 0.86 72.92 99.14 0.92

4 698 2 1 98.65 R2 0.86 0.85 0.86 72.49 98.85 0.89

4 698 2 1 98.65 R3 0.86 0.85 0.86 68.62 99.00 0.92

5 698 2 1 97.60 R1 0.83 0.83 0.83 79.94 100.00 0.00a

5 698 2 1 97.60 R2 0.83 0.83 0.83 80.09 100.00 0.00a

5 698 2 1 97.60 R3 0.83 0.83 0.83 79.94 100.00 0.00a

6 698 2 1 99.34 R1 0.84 0.84 0.84 75.64 99.71 0.98

6 698 2 1 99.34 R2 0.84 0.84 0.84 78.37 99.86 0.99

6 698 2 1 99.34 R3 0.84 0.82 0.84 72.78 98.71 0.92

7 698 2 5 99.81 R1 0.85 0.86 0.85 73.64 98.71 0.52

7 698 2 5 99.81 R2 0.85 0.83 0.85 78.51 97.99 0.41

7 698 2 5 99.81 R3 0.85 0.84 0.85 73.93 99.14 0.62

(Continues)
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TABLE A4 (Continued)

Item n Codes Median tokens Cove-rage in % Rater κHH κHS κSS ER in % General Acc. In % κAC

8 698 2 4 99.53 R1 0.97 0.96 0.97 79.37 99.57 0.99

8 698 2 4 99.53 R2 0.97 0.96 0.97 79.51 99.86 1.00

8 698 2 4 99.53 R3 0.97 0.96 0.97 79.66 99.57 0.99

13 698 2 3 99.24 R1 0.66 0.64 0.66 66.76 98.14 0.70

13 698 2 3 99.24 R2 0.66 0.64 0.66 64.61 98.14 0.86

13 698 2 3 99.24 R3 0.66 0.66 0.66 65.33 99.43 0.94

20 698 2 5 99.61 R1 0.45 0.44 0.45 80.23 99.28 0.91

20 698 2 5 99.61 R2 0.45 0.44 0.45 78.22 99.57 0.57

20 698 2 5 99.61 R3 0.45 0.43 0.45 78.37 99.71 0.00a

Note: The table shows the simulation results per item and rater, the relative coverage of the tokens in the semantic space, the interrater reliability between

the human raters κHH, between (all) simulated supported raters κSS, and between a single supported rater and the other human rater κHS. Additionally, the

table indicates the proportion of automatically coded responses, the proportion of effort reduction ER, the proportion of correctly coded responses

(General Accuracy; including manual and automatic codings), and the agreement between the automatically predicted scores with the true scores κAC.
aDue to uniform automatic coding, the kappa value cannot objectively reflect the agreement, since kappa results in 0, even with high accuracy.

TABLE A5 ASAP simulation results

Item n Codes Median tokens Cove-rage in % Rater κHH κHS κSS ER in % General Acc. In % κAC

1 1672 4 45 99.27 R1 0.86 0.81 0.86 7.95 95.81 0.30

1 1672 4 45 99.27 R2 0.86 0.81 0.86 7.95 95.81 0.30

2 1278 4 59 99.09 R1 0.80 0.8 0.80 0.00 100.00 —

2 1278 4 59 99.09 R2 0.80 0.8 0.80 0.00 100.00 —

3 1891 3 49 99.39 R1 0.60 0.58 0.60 3.23 98.63 0.20

3 1891 3 49 99.39 R2 0.60 0.55 0.60 10.42 95.45 0.00a

4 1738 3 40 98.97 R1 0.61 0.55 0.61 23.76 91.94 0.39

4 1738 3 40 98.97 R2 0.61 0.55 0.61 20.66 92.87 0.22

5 1795 4 22 96.41 R1 0.91 0.69 0.91 49.3 92.09 0.04

5 1795 4 22 96.41 R2 0.91 0.75 0.91 45.35 94.43 0.00a

6 1797 4 19 96.34 R1 0.89 0.80 0.89 53.09 97.50 0.00a

6 1797 4 19 96.34 R2 0.89 0.83 0.89 51.47 97.66 0.00a

7 1799 3 37 99.17 R1 0.93 0.88 0.93 11.67 96.50 0.00a

7 1799 3 37 99.17 R2 0.93 0.88 0.93 11.67 96.33 0.00a

8 1799 3 48 98.88 R1 0.75 0.73 0.75 6.95 97.50 0.51

8 1799 3 48 98.88 R2 0.75 0.73 0.75 4.50 98.39 0.37

9 1798 3 41 98.50 R1 0.71 0.65 0.71 17.91 93.21 0.39

9 1798 3 41 98.50 R2 0.71 0.67 0.71 12.96 95.27 0.33

10 1640 3 33 98.28 R1 0.81 0.78 0.81 27.44 94.39 0.65

10 1640 3 33 98.28 R2 0.81 0.77 0.81 26.40 94.33 0.59

Note: The table shows the simulation results per item and rater, the relative coverage of the tokens in the semantic space, the interrater reliability between

the human raters κHH, between (all) simulated supported raters κSS, and between a single supported rater and the other human raters κHS. Additionally, the

table indicates the proportion of automatically coded responses, the proportion of effort reduction ER, the proportion of correctly coded responses

(general accuracy; including manual and automatic codings), and the agreement between the automatically predicted scores with the true scores κAC.
aDue to uniform automatic coding, the kappa value cannot objectively reflect the agreement, since kappa results in 0, even with high accuracy.
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