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Abstract

Background: Formative assessments are needed to enable monitoring how student

knowledge develops throughout a unit. Constructed response items which require

learners to formulate their own free‐text responses are well suited for testing their active

knowledge. However, assessing such constructed responses in an automated fashion is a

complex task and requires the application of natural language processing methodology.

In this article, we implement and evaluate multiple machine learning models for coding

energy knowledge in free‐text responses of German K‐12 students to items in formative

science assessments which were conducted during synchronous online learning sessions.

Dataset: The dataset we collected for this purpose consists of German constructed

responses from 38 different items dealing with aspects of energy such as manifesta-

tion and transformation. The units and items were implemented with the help of pro-

ject‐based pedagogy and evidence‐centered design, and the responses were coded

for seven core ideas concerning the manifestation and transformation of energy. The

data was collected from students in seventh, eighth and ninth grade.

Methodology: We train various transformer‐ and feature‐based models and compare

their ability to recognize the respective ideas in students' writing. Moreover, as

domain knowledge and its development can be formally modeled through knowledge

networks, we evaluate how well the detection of the ideas within responses trans-

lated into accurate co‐occurrence‐based knowledge networks. Finally, in terms of the

descriptive accuracy of our models, we inspect what features played a role for which

prediction outcome and if the models pick up on undesired shortcuts. In addition to

this, we analyze how much the models match human coders in what evidence within

responses they consider important for their coding decisions.

Results: A model based on a modified GBERT‐large can achieve the overall most

promising results, although descriptive accuracy varies much more than predictive

accuracy for the different ideas assessed. For reasons of comparability, we also eval-

uate the same machine learning architecture using the SciEntsBank 3‐Way
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benchmark with an English RoBERTa‐large model, where it achieves state‐of‐the‐art

results in two out of three evaluation categories.

K E YWORD S

automated coding, constructed response assessment, energy didactics, energy transformation,
knowledge networks, short answer scoring

1 | INTRODUCTION

In online learning, the data generated by learners within learning man-

agement systems can be utilized for monitoring and supporting them,

for example, in the form of automatically provided feedback, an

endeavor often referred to as Learning Analytics (Greller &

Drachsler, 2012; LAK, 2011). To design and administer effective ways

of supporting students throughout units, their active knowledge

needs to be tested via formative assessments. Within such assess-

ments, especially open-ended tasks require students to use and

recombine acquired knowledge actively. For this reason, respective

items can provide a good indication of what active knowledge stu-

dents possess (Livingston, 2009; Lukhele et al., 1994). If one uses such

assessments to monitor the development of students' knowledge as

they progress through a unit, one can gain an insight into how student

knowledge evolves over time, and where potential knowledge gaps

develop. This can, in turn, be used to provide students with appropri-

ate feedback and scaffolding. However, to assess the development of

students' knowledge, their responses need to be coded first. Coding

responses to open-ended tasks by hand is expensive and labor-inten-

sive. Creating systems to automate this procedure promise to speed

up this process, but this endeavor is far from trivial. The automation

which is needed here can be described as a case of automated con-

structed response scoring. Scoring constructed responses in an auto-

mated fashion has a rich and vivid history and was approached with

various methods from natural language processing, ranging from dif-

ferent forms of word- and pattern matching to machine learning

(Burrows et al., 2015). For this reason, one can rely on a fundus of dif-

ferent methods which can be applied to the problem.

For this particular study, the core aim was to implement and eval-

uate systems for the automatic coding of seven different core ideas

from the domain of energy physics within German K12 short

responses. For this purpose, we implemented two transformer-based

and five feature-based machine learning models, as well as several

baselines. The responses used to train and evaluate these were taken

from formative assessments within synchronous online units designed

under the paradigms of project-based pedagogy (Krajcik & Shin, 2014)

and evidence-centered design (Mislevy et al., 2003; Mislevy &

Haertel, 2007; Pellegrino et al., 2016). The dataset we collected

includes the responses of 305 German secondary school students

from Schleswig-Holstein (school forms Gemeinschaftsschule and Gym-

nasium) to a set of 38 different constructed response items.

We evaluated the predictive performance of our models using

F1 scores to test their reliability in predicting the correct codes for

individual responses. Following this, we tested to which degree the

individual codes translated into accurate representations of students'

overall domain knowledge. To represent the latter in a formal

manner, we used knowledge networks (Kubsch et al., 2019; Shaffer

et al., 2016; M. S. C. Thomas & McClelland, 2001). We compared the

networks generated from the predicted codes to gold standard ones

generated from a human-coded ground truth. Overall, a model based

on the transformer language model GBERT-large (Chan et al., 2020)

achieved the best performance among all approaches tested by us, as it

achieved the overall highest F1 scores and the derived knowledge net-

works were the closest to the gold standard. To demonstrate the gen-

eral feasibility of our approach and to enable comparability to past

work, we also evaluated this best-performing architecture on the SciEn-

tsBank 3-Way (Dzikovska et al., 2013) dataset, an established bench-

mark, where it could achieve new state-of-the-art results. Moreover,

we inspected our models for descriptive accuracy, that is, the question

if they assign codes to responses for correct reasons. For this purpose,

we evaluated if our models had learned undesired shortcuts and to

which extent they considered similar signals in responses important as

human coders. The models indeed learned a few impactful undesired

shortcuts and overall differed in how they matched human coders in

different categories. Nonetheless, we could also show that models.

2 | BACKGROUND

2.1 | Energy learning and integrated knowledge
networks

Modern science education standards and other educational policy

documents stress the importance of students being able to apply scien-

tific ideas to make sense of the natural and engineered world

(e.g., National Research Council, 2012; Konferenz der Kultusminister der

Länder in der Bundesrepublik Deutschland., 2020). One prerequisite for

such competence (Weinert, 2002), also referred to as knowledge-in-use

(Pellegrino, 2013), is that students possess well-connected knowledge

organized around the core ideas of a given domain. The structure of their

individual integrated knowledge can be modeled using network models,

for example, in the form of knowledge networks (Anderson, 2013;

McClelland & Cleeremans, 2009; M. S. C. Thomas & McClelland, 2001).

In a constructivist sense, learning can be modeled as a process during

which students expand, modify and update their personal knowledge net-

works as they interact with given course material and construct new

knowledge (diSessa, 1988; Kubsch et al., 2019); well-connected
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knowledge networks should, amongst other benefits, also allow for a flu-

ent retrieval of information (Bransford, 2000; Linn, 2006).

A core concept across the sciences, and especially in the

domain of physics, is energy. Research investigating students' opti-

mal progression of them learning about energy in K-12 instruction

(drawing on samples from the U.S., China, and Germany, among

others) suggests that a typical progression in developing knowledge

about energy is to first acquire ideas about the different ways in

which energy manifests itself in the real worlds (e.g., that a moving

object has kinetic energy). This is followed by an integration of

ideas about how different forms of energy can be transformed from

one form into another (e.g., the declining speed and increasing

height of a pendulum as it moves up indicate kinetic energy being

transformed into gravitational energy). Following this notion,

students should integrate ideas about degradation and dissipation

before being introduced to ideas around the principle of energy

conservation (Duit, 2014; Herrmann-Abell & DeBoer, 2018; Liu -

et al., 2015; X. Liu & McKeough, 2005; Neumann et al., 2013; Yao

et al., 2017). Figure 1 schematically illustrates the interplay between

knowledge networks and the described learning progression.

There have been multiple publications dealing with the assessment

of students' integrated knowledge in energy didactics. For example, Lee

and Liu (2010) proposed a holistic approach for which they first devel-

oped coding rubrics for open-ended tasks that specified different levels

of connectedness and integration of ideas. They then conducted a

study for which students had to solve multiple-choice questions about

different energy-related ideas and then provide open-ended explana-

tions for their choice. Afterwards, students' answers were hand-coded

accordingly on a five-point scale, indicating how well they connected

respective ideas. Liu et al. (2016) successfully automated the respective

coding process using support vector machines.

Kubsch et al. (2019) proposed a network analytic approach for asses-

sing the development of students' integrated knowledge throughout a

unit. They collected a data set consisting of interview transcriptions and

constructed responses from secondary school students working on a

10-week long unit about energy and hand-coded different pre-defined

ideas about energy that students used in their responses. Then, based on

the co-occurrence of identified ideas within responses, the authors

computed network representations of students' demonstrated knowledge.

Like related network analytical approaches such as epistemic network

analysis (Shaffer et al., 2016), these networks could provide a detailed

overview of what ideas students used in their explanations and how they

connected them. Feeding such networks back to teachers could, in theory,

provide them with valuable information on their students' performance

concerning various aspects. Automating the assessment could help to

conduct respective network analytic studies on energy learning on a larger

scale and should allow for the implementation of feedback and scaffolding

systems that send out feedback based on students' knowledge networks.

2.2 | Assessment of short constructed responses

Assessing constructed responses automatically is one of the oldest and

most established use cases of natural language processing in educational

contexts. In many publications, the methodology has also been referred

to as automatic short answer assessment (ASAA) or short answer grading

(ASAG). In most cases, authors addressed this problem with the intention

to predict holistic scores or grades, ergo assigning a given input text a

discrete or continuous value indicating its quality. Burrows et al. (2015)

provide a comprehensive literature review addressing important earlier

work in the field focusing on short free-text responses.

The earliest work in this field builds upon the notion that students'

responses are combinations of different expressed key concepts. A

response is graded as correct if enough concepts from a pre-defined

concept lexicon are detected in a response. Significant contributions

based upon this notion are Burstein et al. (1999), Callear et al. (2001),

and Leacock and Chodorow (2003). Other approaches build upon dif-

ferent forms of pattern matching between students' responses and pre-

defined sample solutions. Pattern matching can be conducted through

a range of different methods such as bag-of-words matching

(Cutrone & Chang, 2010; Siddiqi & Harrison, 2008), Boolean matching

(Thomas, 2003), matching sub-segments of the parse trees of responses

and provided sample solutions (Bachman et al., 2002; Mitchell

et al., 2002), or formal semantics (Hahn & Meurers, 2012). Another

methodology often applied to the task is latent semantic analysis

(Landauer et al., 1998). Systems such as the ones proposed by Zehner

F IGURE 1 A schematic illustration of
how knowledge networks modeling a
learning progression in energy learning
might look after the completion of a
couple of tasks by a learner.
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(2016) or Klein et al. (2011) use respective word vectors in combination

with clustering algorithms to model the relationships between

responses and sample solutions in an unsupervised manner. Andersen

and Zehner (2021) introduced a system for conducting such cluster-

based scoring with the help of a graphical user interface.

Much of the more recent work on the topic uses different super-

vised machine learning algorithms. Works such as Hahn and Meurers

(2012), Meurers et al. (2011), and Horbach et al. (2013) applied

k-nearest-neighbor classifiers trained on hand-crafted and semi-hand-

crafted feature sets incorporating different lexical and semantic simi-

larity features. Crossley et al. (2016) combined word frequencies,

semantic similarity, and psycholinguistic norm features with linear dis-

criminant analysis to score different chemistry tasks. Moreover, with

SemEval-2013 Task 7, Dzikovska et al. (2013) held a shared task focus-

ing on the topic, where participating systems were evaluated on multi-

ple data sets. Here, an approach based upon an ensemble of support

vector machines and logistic regression excelled and achieved the

best results in most categories (Ott et al., 2013). Runners-up systems

were based on hierarchical pattern matching, decision tree classifiers

(Jimenez et al., 2013), and naïve Bayes classification on a mixed fea-

ture set combining bag-of-words, word n-grams, and different similar-

ity and entailment metrics (Levy et al., 2013).

The corresponding data sets have since been adopted as standard

benchmarks for comparing constructed response assessment systems.

Sultan et al. (2016) achieved improved results for these data sets with

a ridge regressor-based system trained on different semantic similarity

features. Saha et al. (2018) applied logistic regression with a feature

set combining word-level similarity scores and sentence embeddings

to the problem. Another proposed system uses features based on sim-

ilarity scores and clustering to augment the input with prototypical

responses from respective training sets (Marvaniya et al., 2018). For

designing such feature-based scoring systems, Zesch and Horbach

(2018) introduced a Java framework called Escrito, which implements

a pipeline of different dataset readers, preprocessing components,

feature extractors, and machine learning algorithms on top of the

DKPro framework (Eckart de Castilho & Gurevych, 2014).

The overarching success of various neural network architectures in

natural language processing also led to their application in the automated

assessment of constructed responses. Maharjan et al. (2018) and Uto and

Uchida (2020) applied LSTM networks (Hochreiter & Schmidhuber, 1997)

to the task. Gautam and Rus (2020) evaluated systems based on neural

tensor networks, which incorporate structured data from knowledge

graphs to improve predictions for the dataset from Maharjan et al. (2018).

Transformer language models such as BERT (Devlin et al., 2019) were suc-

cessfully applied to the task, too, and could be used to achieve the latest

state-of-the-art results for the SemEval-2013 data (Camus &

Filighera, 2020; Poulton & Eliens, 2021; Sung et al., 2019).

2.3 | Trusted learning analytics

Assessing students' knowledge through computational, data-driven

methods can provide a basis for Learning Analytics (Greller &

Drachsler, 2012; LAK, 2011). According to Greller and Drachsler

(2012), Learning Analytics refers to varied data-driven research and

engineering activities that focus on modeling, evaluating, and support-

ing human learning. This includes learner feedback and support systems

that build upon the automated assessment of responses. It is important

to state that, while predictive modeling through machine learning and

natural language processing is an important part of the Learning Analyt-

ics toolbox (given that a lot of learner data comes in the form of text),

the core aim of Learning Analytics is the support of learners and

teachers. For this reason, respective systems should work in the best

interest of them. Slade and Tait (2019) formulated concrete ethical

guidelines for Learning Analytic work. According to these guidelines,

“models used to analyze, interpret, and communicate learning analytics

to stakeholders (support staff, advisers, faculties, students) should be

sound, free from algorithmic bias; transparent where possible and

clearly understood by the end-users.” A related notion can be found in

Drachsler and Greller (2016), who introduced the term Trusted Learn-

ing Analytics. While they primarily focus on issues related to data pri-

vacy, they also reflect upon the problem of asymmetrical power

relationships found in learning scenarios. Predictive, data-driven meth-

odology can replicate asymmetrical power relations if they are mirrored

in data and has the potential that “[c]ertain patterns are made visible

[…] while other types are erased” (Birhane, 2021). Moreover, through

distributional biases in training sets, models can learn unwanted short-

cuts instead of accurate regularizations (Geirhos et al., 2020), a phe-

nomenon sometimes also referred to as “clever Hans modeling”
(e.g., Anders et al., 2022). Therefore, if such models are deployed as the

basis of feedback- or scaffolding systems, it is of crucial importance to

assess whether they function correctly and to guarantee that they do

not negatively impact learners negatively through mispredictions.

2.4 | Explainable models

Glass-box algorithms enable us to gain insight into the inner workings

of models to prevent such scenarios. Machine learning algorithms can

be categorized into glass-box and black-box approaches, depending

on how much respective insight they provide (e.g., Murdoch

et al., 2019). Glass-box models can offer model-intrinsic explanations

for their predictions (Søgaard, 2021). Typical examples of glass-box

models are regression-based ones. That is, if input features are nor-

malized to the same scale, regression coefficients can indicate the

possible contribution of each feature to a respective outcome.

Another example of interpretable models is tree-based ones. Here,

practitioners can inspect and traverse individual learned trees to

understand what features contribute to a given prediction.

However, a core problem in machine learning is that models with

the highest predictive power, such as transformers (Vaswani

et al., 2017), are often black-box models (Sun et al., 2021). It is hard to

control if such models learn plausible regularities or unstable shortcuts

(e.g., Geirhos et al., 2020). As black boxing prevents the usage of

respective models in high-stakes scenarios where accountability is

needed (Sun et al., 2021), there has been ongoing research on methods

770 GOMBERT ET AL.
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for achieving transparency and interpretability so that the predictive

power of respective methods becomes available in such scenarios, as

well (Murdoch et al., 2019; Søgaard, 2021; Sun et al., 2021). According

to Sun et al. (2021), methods for explaining the predictions of neural

black box models can be grouped into three categories. These are

training-based, test-based, and hybrid, with the latter referring to com-

binations of the prior two. Training-based methods are aimed at identi-

fying training examples responsible for patterns found in the

predictions, while test-based methods recognize which parts of an

input are responsible for an according prediction outcome.

Bastings and Filippova (2020) argue in favor of saliency-based

methods which can be categorized as test-based following the ontology

by Sun et al. (2021). In their article, they further categorize such methods

into gradient-, propagation- and occlusion-based. Gradient-based

methods acquire model gradients through backpropagation to infer

importance scores for sentences' words. Propagation-based methods

such as layer-wise relevancy propagation (Binder et al., 2016) require

custom backward passes to calculate relevancy scores over different

neural network layers. These scores are then accumulated into final

importance scores. Some methods combine gradient- and propagation-

based methods. For example, Transformer Explainability (Chefer

et al., 2021), a method aimed specifically at transformer language models

that combines gradient-based weighting and scores acquired through

layer-wise relevancy propagation, has been introduced in the context of

transformer language models. Occlusion-based methods mask individual

features or words (or, in certain use cases, groups of the same) and then

monitor how this affects predictions. Occlusion can also be used to eval-

uate the reliability of other explainability methods. This is conducted

through masking the parts of an input marked as important by a respec-

tive method and then measuring how this changes predictions.

As multiple methods for explaining models in different fashions have

been developed, and notions of interpretability differ across the field,

Murdoch et al. (2019) introduced the PDR framework, which is aimed at

providing a general conceptual framework for approaching interpretable

machine learning in a structured manner. PDR stands for predictive accu-

racy, descriptive accuracy, and relevancy in this context. Relevancy refers to

the requirements of stakeholders, namely the aspects of descriptive and

predictive accuracy about the models which are relevant to them, that is,

how the influence of different features can be made visible, if explana-

tions need to be model-intrinsic, or if the methods used need to be test-

or training-based. Predictive accuracy refers to the well-established evalu-

ation methods in machine learning that assess predictions' quality.

Descriptive accuracy refers to whether what a model learns is plausible

and faithful to the applied coding guidelines.

3 | RESEARCH QUESTIONS

The core aim of this study was to develop a method for automatically

coding core ideas related to the manifestation and transformation of

energy in students' constructed responses to derive knowledge net-

works from these codes. As NLP methodology for the automated

assessment of constructed responses allows coding texts in an

automated fashion, we wanted to assess how well the respective

methodology worked for our use case. To comply with Slade and Tait

(2019) and Drachsler and Greller (2016), the PDR framework

(Murdoch et al., 2019) was used as an orientation for approaching this

task by us. Following the framework, we first assessed was relevant

for us in terms of predictive and descriptive accuracy.

For predictive accuracy, the relevant factor was that models should

make correct predictions for as many test inputs as possible, that is,

that the correct knowledge was coded within responses and that pre-

dictions for single responses translated well into accurate student

knowledge networks. For descriptive accuracy, it was, in the broadest

sense, relevant to know if the models we trained for this purpose

picked up on plausible evidence matching what the human coders con-

sidered as such or if they learned undesired shortcuts (Geirhos

et al., 2020). This can be conducted by inspecting model features. An

intuitive way to test this is by using occlusion to examine how masking

human-coded evidence affects predictions (Poulton & Eliens, 2021).

To summarize, we addressed the following research questions:

Research Question RQ1. : To what extent can core

ideas from the energy physics domain be coded in stu-

dents' free-text responses using NLP methodology for

constructed response assessment?

Research Question RQ2. : What are the trade-offs

between explainable feature-based approaches and

transformer-based ones concerning predictive accuracy

in this context?

Research Question RQ3. : What are the trade-offs

between explainable feature-based approaches and

transformer-based ones concerning descriptive accuracy

in this context?

Research Question RQ4. : Do the features considered

important by models for their predictions match human

coding guidelines?

4 | METHOD

4.1 | Dataset

The data used in this study was collected from two approximately six

45 minutes class period long units on energy designed for middle

school physics instruction. The units were designed following project-

based pedagogy (Krajcik & Shin, 2014). Each unit starts with setting

up a driving question on energy and related phenomena that moti-

vates the following lessons (e.g., ‘Why do laptops sometimes over-

heat?’). This driving question is then divided into three smaller sub-

driving questions that students need to answer by engaging in numer-

ous scientific practices, such as conducting investigations or con-

structing explanations. Finally, the units conclude by bringing together
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the answers to the sub-driving questions to answer and reflect on the

original driving question. The units were implemented in the learning

management system Moodle (Dougiamas & Taylor, 2003), and all par-

ticipating teachers received professional tutoring on Moodle and

project-based pedagogy. They also were supported throughout the

implementations of the units by the researchers. Figure 2 shows a

typical open-ended task from one of the units.

We used a procedure grounded in evidence-centered design (ECD)

(Mislevy et al., 2003; Mislevy & Haertel, 2007; Pellegrino et al., 2016)

to develop rubrics for coding the core ideas within responses. It is

based on existing research on students' learning about energy to for-

mulate a competency model (e.g., Herrmann-Abell & DeBoer, 2018;

Neumann et al., 2013). The core idea the units are meant to teach is

that energy manifests itself in different forms, such as radiant or ther-

mal energy and that each form can be observed through typical indica-

tors. For example, a characteristic indicator of thermal energy is

temperature. Moreover, the units also introduce the idea that energy

can be transformed from one form into another; that is, the manifesta-

tions of energy change as phenomena unfold, for example, in the form

of radiant energy converted into electric energy through a solar cell.

Since energy degradation, dissipation, and conservation were not cov-

ered in the units, respective codes were not included in the rubric.

Table 1 shows the complete list of codes we used in this work, grouped

by aspect. It also provides criteria and examples for each of them.

In total, the data set we collected for this work comprises responses

to 38 different constructed response items in German, for which we col-

lected a total of 2835 responses from 305 students (see also Table 2).

Each response was coded binarily for each idea indicating if it was pre-

sent or not. Moreover, the coders also annotated the spans they saw as

the corresponding evidence that a student knew and applied an idea

correctly (e.g., if a student wrote about a light bulb that lights up after a

switch was pressed, this could be considered as evidence for the

student being aware of the idea that there exist indicators for electric-

ity). We reference these parts of the responses as evidence spans.

Based on the data of 54 students (17.7% of the overall sample),

interrater reliability was assessed using Cohen's Kappa (Landis &

Koch, 1977) and was found to be within ranges with a minimum of

0.41 and an average of 0.96 across all tasks. In an iterative process,

researchers and trained student workers first coded the responses

independently, then checked for agreement, and finally resolved

instances of disagreement through discussion. As some of the con-

structed response items addressed multiple ideas, responses could

also be assigned multiple codes. Vice versa, we did not code all con-

structed response items for all ideas. Instead, we assigned all items

only codes that were relevant for them.

Table 3 shows the corresponding distribution of present- and not

present-cases for the different codes. It can illustrate that the present

case is the minority case for all codes except Thermal Indicator and.

Radiant Indicator. Table 4 shows the type-token rations of the human-

coded evidence spans and the full responses for the different codes.

This can reveal that the evidence spans for the codes corresponding

to the manifestation of energy are limited to a small set of words,

while the spans related to the indicator codes show a higher lexical

diversity.

4.2 | System descriptions

As not all responses were coded with all codes from the rubric but

rather only the ones that applied to the content of respective items,

the problem at hand cannot be formulated as a regular multiclass clas-

sification problem but is rather a special case of a multi-labeling prob-

lem. In theory, responses can mention ideas that they were not

explicitly coded for if students still brought them up.

F IGURE 2 An open-ended question from the
data set. In the task, students are prompted to
discuss with a partner and then answer the
question, “Why does a laptop heat up
sometimes?”.
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4.2.1 | Feature-based approaches

Therefore, for our feature-based models, we trained one distinct

binary classification model per code for the feature-based classifiers.

The subsets of responses coded for the involved idea were used for

training and evaluating each respective model. With Explainable

Boosting Machines, Random Forests, Ridge Regression, Logistic

Regression, and Decision Trees, we tested five different explainable

feature-based algorithms. These algorithms were chosen as they can

all be explained through various methods for calculating feature

importance scores. To our best knowledge, except for explainable

boosting machines, all these algorithms were successfully applied for

assessing constructed responses in past work. Except for Explainable

Boosting Machines, for which we used an implementation provided

by Nori et al. (2019), all models were implemented with Scikit-learn

(Pedregosa et al., 2011) version 0.24.1.

While all other feature-based algorithms we applied are broadly

known and part of the standard toolbox in machine learning, this is

not the case for Explainable boosting machines (Lou et al., 2013). It is

an ensemble method and an implementation of a generalized additive

model as proposed by Hastie and Tibshirani (1987), a regression

setup in which each of the different features is propagated through

a corresponding scoring function aimed at modeling their contribu-

tion to a given final prediction outcome. As these are simply added

up into a final score, the contribution of each feature to a prediction

outcome can be explained ad hoc. Gradient-boosted regression tree

ensembles (Mason et al., 2000) are used to fit the different scoring

functions.

A criterion for all features we used to encode responses was that

all of them should be easily interpretable by themselves, that is, it

should be clear what information they encode so that respective fea-

ture importance scores would be informative of what the models had

learned. For this reason, black box features such as raw latent word

vectors were not used in the feature set. Instead, the following list of

features was used:

Character n-grams

Ideas are, by large, signaled through certain words or combinations

thereof, which function as respective evidence. For this reason, it is

an intuitive choice to represent texts by the different terms they

might contain. However, as the dataset consists of secondary school

students' writing and, therefore, some responses have spelling mis-

takes, this approach cannot be considered robust and might fail to

represent texts appropriately in such cases. Nonetheless, if a word

contains spelling mistakes, it is likely that most of its constituting char-

acters will still be correct. Therefore, when these words are encoded

as lists of n-grams, there is a substantial overlap between misspelled

and correctly spelled words. Thus, when encoding misspelled words

through n-grams, they can still provide valuable signals. Therefore, we

included character n-grams in our feature set with an n ranging from

1 to 5 for responses, sample solutions, and prompts. The n-grams

were represented through tf-idf scores.

Word n-grams

In addition to character n-grams, we still included word n-grams using

an n ranging from 1 to 3. We included these as character n-grams can-

not appropriately model sequences of multiple words within a text,

which might give helpful evidence on whether a specific idea is con-

tained in a text, depending on the word order. Again, the n-grams

were represented through tf-idf scores.

TABLE 1 This rubric lists the different codes we applied to the
data. Besides their names, the table lists corresponding descriptions
and examples. Box brackets mark the human-coded evidence spans
within the examples, the sections within the responses coders had
used as evidence for positive coding decisions

Code Criterion Example

Electric Energy A given response

directly mentions the

manifestation of

electric energy or a

synonym for the

same.

Die Solarplatten

erreichen die größte

[elektrische Energie].

(The solar panels

reach the highest

electric energy).

Electric

Indicator

A given response

mentions at least

one indicator for the

manifestation of

electric energy.

Man könnte

überprüfen, ob man

[einen Stromschlag

bekommt]. (One

could test if one gets

an electric shock).

Thermal Energy A given response

directly mentions the

manifestation of

thermal energy or a

synonym for the

same.

[…] und das

Thermometer zeigt

eine Steigerung der

[Wärmeenergie] an.

([…] and the

thermometer shows

an increase in

thermal energy).

Thermal

Indicator

A given response

mentions at least

one indicator for the

manifestation of

thermal energy.

Der Leiter [erhitzt

sich]. (The conductor

heats up).

Transformation

Process

A given response

mentions the

transformation of

energy from one

form into another.

So kann an dem

meisten

Strahlungsenergie in

elektrische Energie

[umgewandelt

werden]. (By this,

the most radiant

energy can be

transformed into

electric energy).

Radiant Energy A given response

directly mentions the

manifestation of

radiant energy or a

synonym for the

same.

Damit [die Energie von

der Sonne]

aufgefangen werden

kann. (So that the

energy of the sun

can be collected).

Radiant

Indicator

A given response

mentions at least

one indicator for the

manifestation of

radiant energy.

Weil dort am meisten

[Sonnenlicht]

hinkommt. (Because

most sunlight

reaches this point).
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N-grams of part-of-speech and dependency tags

We also included n-grams of part-of-speech and dependency tags.

We used Stanza (Qi et al., 2020) to acquire these annotations auto-

matically. The Universal Dependencies set of dependency relations1

(Nivre et al., 2020) is used for dependency tags, while, for part-of-

speech tags, the Universal Dependencies and Stuttgart-Tübingen tag

sets2,3 are used. The n was set to a range from 1 to 3. The n-grams

were represented through tf-idf scores.

Similarity metrics

We included two different text similarity metrics with Levenshtein

distance and cosine similarity. These were aimed at representing

the superficial and semantic similarities between responses and the

respective prompts and sample solutions. Cosine similarity is

computed using German fastText word embeddings (Bojanowski

et al., 2017) and word vectors generated through latent semantic anal-

ysis (Landauer et al., 1998). This is conducted on the levels of individ-

ual words as well as full responses. For the latter case, the centroid

vectors of all individual word vectors from a response are used. We

calculated the distances of all pairs of words between two texts for

the word level. Following this, we selected the minimum, maximum,

average, and median from the resulting scores and the range between

minimum and maximum similarities as distinct features.

4.2.2 | Transformer-based multitask learning

Camus and Filighera (2020), Poulton and Eliens (2021), and Sung et al.

(2019) used transformer language models to achieve state-of-the-art

results for different SemEval-2013 data sets. For this reason, the

application of transformer language models seemed like an approach

worth testing for our purposes with regard to pure predictive accu-

racy. While transformers are black-box models, methods such as

Transformer Explainability (Chefer et al., 2021) are promising to offer

explanations that can be used to reveal shortcuts and gain insight into

the models.

Transformer language models such as BERT (Devlin et al., 2019)

are specialized feed-forward neural networks that process sequential

data. They aim to solve a wide range of different natural language

processing tasks and consist of so-called transformer encoders

(Vaswani et al., 2017). These neural networks are based on what is

called the self-attention mechanism. This neural network building

block learns to represent words within a sequence as a learned

weighted mean of the vectorial representations of their context

words. By using multiple attention units, also called attention heads,

models can learn to attend to different linguistic signals. Through

this, transformer language models can produce contextual word

embeddings. These vectorial representations of words encode their

global distributional properties and respective local sentence con-

texts. Such representations can be used as input to neural networks

for subsequent task-specific training and are especially useful in

ambiguous cases where differences in contextual meaning can affect

prediction outcomes.

TABLE 2 This table lists the number of constructed response items, number of students, number of responses, and average number of
responses per student

C. Response

Items

Number of

Students

Number of

Responses

Avg. Number of Responses per

Student

Avg. Number of Words per

Response

38 305 2835 9.30 25.48

TABLE 3 The class distributions for the different codes within the data set

Electric
Energy

Electric
Indicator

Thermal
Energy

Thermal
Indicator

Transformation
Process

Radiant
Energy

Radiant
Indicator

Present 222 308 123 424 235 194 616

Not

Present

904 629 347 169 891 653 231

TABLE 4 The type-token ratios of the human-coded evidence spans (parts of responses human coders marked as relevant for a given coding
decision) and the full responses for the different codes

Corpus
Electric
Energy

Electric
Indicator

Thermal
Energy

Thermal
Indicator

Transformation
Process

Radiant
Energy

Radiant
Indicator

Evidence

Spans

0.121 0.176 0.152 0.162 0.095 0.195 0.101

Full

Responses

0.134 0.135 0.168 0.120 0.131 0.127 0.086

1https://universaldependencies.org/u/dep/
2https://universaldependencies.org/u/pos/
3https://homepage.ruhr-uni-bochum.de/stephen.berman/Korpuslinguistik/Tagsets-

STTS.html
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The training of transformer language models is divided into two

distinct phases (see Figure 3). In the first one, a regular feed-forward

layer is attached to the transformer language model. The resulting

architecture is then trained with a language modeling task, usually

masked language modeling. After this, the model can be used for down-

stream training. For this second phase, a smaller, task-specific neural

network, in most cases a linear feed-forward layer, is attached to the

transformer model. This layer is then passed the outputs of either the

last or multiple intermediate layers of the pre-trained language model,

and the overall network is trained to solve the downstream task in a

supervised manner. As pre-training transformer language models is

costly, while fine-tuning them is cheap, it has become standard prac-

tice not to carry out pre-training for each task but to rely on external

pre-trained models. Especially the Huggingface transformers library

(Wolf et al., 2020) and the accompanying model repository have

become popular choices for this.

As not all responses were assigned codes for all ideas, the prob-

lem cannot be formulated as a regular multiclass or multi-label classifi-

cation problem. However, training one distinct binary model per label

as performed for the feature-based models becomes expensive

quickly in terms of memory consumption for transformers. Conse-

quently, we turned to the principle of multitask learning, used a single

shared transformer language model, and initialized one binary linear

classification layer per idea. The resulting output embeddings are then

only fed to the binary layers corresponding to the codes relevant for a

given item.

Moreover, we made a further adjustment to the model. As differ-

ent attention heads in different layers of transformer language models

tend to encode differing linguistic aspects, Liu et al. (2019) introduced

the method of scalar mixing to let models make better use of these

signals. Instead of just using the output of the last layer of a trans-

former language model (which is the default method as proposed by

Devlin et al., 2019), a learned weighted mean of all layer outputs is

calculated to allow the model to better use signals from the attention

heads of intermediate layers. More specifically, the weights by which

the different layer outputs are averaged are tuned during training. The

resulting word vectors are then mean pooled to acquire a centroid

vector representing the whole response. This pooling mechanism is

inspired by findings from Reimers and Gurevych (2019), who found

that mean pooling can help to improve predictive performance com-

pared to the regular transformer pooling mechanism when

F IGURE 3 A schematic illustration of the training process of transformer language models taken from Devlin et al. (2019), licensed under
Creative Commons Attribution 4.0. First, the model is trained with language modeling tasks such as masked language modeling and next sentence
prediction in the pre-training stage. Afterwards, the model can be fine-tuned for different tasks such as question answering.

F IGURE 4 A visualization of the neural network architecture we
use for our transformer-based models.

GOMBERT ET AL. 775

 13652729, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jcal.12767 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [12/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



representing documents. Figure 4 shows the architecture we imple-

mented schematically.

We used GBERT (Chan et al., 2020) as a basis for our models,

a BERT variant pre-trained exclusively on German data. It comes

in two different variants, base and large. The large model includes

24 transformer layers and consumes around double the memory

compared to the base model with only 12 layers, but it also

promises an increased performance. Therefore, we trained two sys-

tems based on each of the variants. The exact algorithm we used to

train the transformer-based models can be formulated in the

following way:

For each batch:

1. For each training example in a batch:

a. Propagate the input response through the transformer language

model.

b. Acquire all word vectors for all transformer layers.

c. Pass them through scalar mixing and mean pooling components

to calculate a document embedding.

d. For all codes, the example was coded for:

i. First, pass the document embedding to the respective

classification layer.

ii. Then, calculate the individual loss and store it.

2. After calculations for all examples from the batch are finished: cal-

culate the mean of all losses stored for the different samples.

3. Backpropagate the resulting mean loss to adjust the model

parameters.

4. Delete the single losses stored for the items from this batch.

We used AdamW (Loshchilov & Hutter, 2019) as the optimization

algorithm and a cosine-based learning rate scheduler with a continu-

ally decreasing learning rate. After conducting a hyperparameter

search, we trained the models for 12 epochs using a learning rate of

2e-5, a weight decay of 1e-2, and a micro-batch size of 4. During

hyperparameter search, we found that, after the 12th epoch, models

started to overfit too much, and results started to decrease.

4.2.3 | Baselines

In addition to our machine learning-based models, we also implemen-

ted two keyword-based baselines. These function through keyword

lexica, against which the lemmatized tokens within input responses

are matched (like the early works discussed in the second paragraph

of section 2.2). Per code, one lexicon is defined. A respective positive

label is assigned to a response containing at least one of the keywords

from a lexicon. For the first of these baselines, we assembled respec-

tive lexica by hand. We collected different nouns, verbs, adjectives,

and adverbs present within human-coded evidence spans from a sub-

set of the data set and selected appropriate words from this set. For

the second one of these baselines, the keyword lexica were assem-

bled automatically from the words within a response. This was

achieved by ranking them according to their odds ratios using a fore-

ground corpus of positive examples and a background corpus of all

positive and negative examples from the training set combined to

acquire the keywords which were most distinctive for the positive

examples compared to the overall dataset.

5 | EVALUATION

5.1 | Predictive accuracy

For evaluating predictive accuracy, we trained and evaluated all differ-

ent models in a 5�5 cross-validation setup which was also used for

hyperparameter search. The same folds were used for all models to

ensure that the results were perfectly comparable. Moreover, we did

not group the folds by single data points but by different students.

This is conducted as the systems are intended to classify the data of

unseen students in the future, which can be tested best through this

setup. We relied on F1, the harmonic mean between precision and

recall, as the main evaluation metric to acquire separate scores for the

positive and negative cases. Table 5 shows the respective results.

What becomes visible after observing these scores is that most

machine-learning-based models show satisfactory performances for most

labels. Out of all the different models, the one based on GBERT-large

achieved the highest F1 scores for both cases and can, for this reason, be

considered the best out of all models concerning predictive accuracy.

However, the different feature-based models do not rank far below,

with explainable boosting machines and random forests performing the

best. The keywords-based baselines perform better than the random

baseline but significantly worse than the machine learning models.

For the next evaluation step, we used the models to construct

knowledge networks like Kubsch et al. (2019). This was conducted to

observe how well codes for individual responses would translate

into such networks. Nodes were used to represent the different ideas,

while edge weights were used to indicate the number of co-

occurrences of these ideas within students' responses. For the evalua-

tion, we instantiated two networks per student. The first was con-

structed from model predictions, that is, if two ideas co-occurred in a

response, the respective edge weight was increased by one. The sec-

ond network was a gold standard one. These networks include all the

ideas a student could have theoretically mentioned in the responses

he gave, ergo all codes which were possible for these responses.

Figure 5 shows an example of a student network from our data set.

We then measured Euclidean distances between the adjacency

matrices of the predicted and gold standard networks to assess their

similarity. A smaller Euclidean distance indicates a higher similarity,

while a larger distance indicates a lower similarity. Moreover, we mea-

sured the percentage of cases where a predicted network completely

matched a gold standard one.

As Table 6 shows, the resulting ranking matches the one from the

F1-based evaluations. Models which reached higher F1 scores also

achieved smaller mean Euclidean distances between predicted and

gold standard networks, which is an expectable result. Moreover, the
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models achieving the highest F1 scores also achieve the highest per-

centage of complete matches between gold-standard and predicted

networks. However, high F1 scores calculated for single responses did

not translate well into a high rate of full matches. While the macro F1

score for the best model based on GBERT-large is 90.98, only 54.14%

of all networks could be fully reconstructed by it. The mean Euclidean

distance of 0.821 indicates that most network differences seem to be

minor, but it is still a limitation that needs to be considered. Figure 6

shows the distributions of Euclidean distances between predicted and

gold standard networks for the different models.

It can reveal that most predicted networks that are different from

gold standard ones differ from these by Euclidean distances between

mostly 1 and 3. For the decision tree- and regression-based models,

higher distances up to 4 are also common. The figure can also reveal

that the networks predicted by the BERT-based models come closest

to the gold standard ones.

5.1.1 | Secondary evaluation using SemEval-2013
Task 7 data

The dataset we focused on in this article is an entirely novel one. This

makes it hard to relate our results to past work in the field. To enable

respective comparisons, we also evaluated the best-performing model

architecture using the SciEntsBank 3-way dataset from SemEval-2013

Task 7 (Dzikovska et al., 2013) as a reference point. This dataset con-

sists of 10,000 student responses from 197 different science-related

open-ended tasks at the university level. The evaluation set is divided

into three subsets: unseen responses (responses to open-ended tasks

which were also used for training), unseen questions (responses to

open-ended tasks that were not seen during training but are from sim-

ilar domains as the ones encountered during training), and unseen

domains (responses to open-ended tasks which were not seen during

training and stem from different domains). Moreover, for each open-

TABLE 5 The results of the different approaches achieved for the corresponding codes. This table depicts F1 scores

Electric

Energy

Electric

Indicator

Thermal

Energy

Thermal

Indicator

Transformation

Process

Radiant

Energy

Radiant

Indicator

Macro.

F1

Present

Multitask-GBERT-

large

93.29 89.29 90.53 90.36 91.89 91.07 90.46 90.98

Multitask-GBERT-

base

90.76 86.69 91.07 89.50 92.22 89.99 89.79 90.00

Random Forests 92.31 80.81 85.37 87.55 86.58 87.19 88.80 86.94

Explainable Boosting

Machine

90.68 78.78 83.60 87.84 86.67 86.33 89.14 86.15

Logistic Regression 87.44 78.91 83.58 85.92 81.14 84.30 88.60 84.27

Ridge Regression 89.91 78.25 82.10 83.13 82.15 87.11 86.00 84.09

Decision Tree 87.72 79.18 76.80 82.14 78.89 78.72 83.26 80.96

Keywords (Evidence

Spans)

60.17 62.59 73.19 85.50 46.99 61.19 86.86 68.07

Keywords (Odds

Ratio)

61.90 18.77 76.89 81.21 61.78 49.49 80.53 61.51

Random 19.72 32.87 26.17 71.50 20.87 22.90 72.73 38.11

Not Present

Multitask-GBERT-

large

98.3 94.68 96.86 75.69 97.80 97.20 70.79 90.19

Multitask-GBERT-

base

97.63 93.44 96.88 72.23 97.86 96.90 66.17 88.73

Explainable Boosting

Machine

97.70 90.93 94.49 68.22 96.61 96.05 64.70 86.96

Random Forests 98.09 92.02 95.00 64.57 96.61 96.29 62.14 86.38

Logistic Regression 97.06 90.65 94.45 66.24 95.32 95.56 66.91 86.59

Ridge Regression 97.56 89.76 93.74 63.73 95.31 96.18 60.90 85.31

Decision Tree 97.00 89.79 91.74 62.44 94.43 93.72 54.06 83.31

Keywords (Evidence

Spans)

80.73 68.70 86.70 48.98 58.45 76.40 35.50 65.07

Keywords (Odds

Ratio)

83.25 71.42 90.12 43.03 81.22 58.97 36.92 66.42

Random 80.28 67.13 73.38 28.50 79.13 77.10 27.27 61.82

Note: Bold scores are the best achieved in the respective category.
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ended task, a sample solution is provided. Each response was coded

with one out of these three labels:

• Correct: a response is correct and matches a given sample solution.

• Incorrect: a response is incorrect and does not match a given sam-

ple solution.

• Contradictory: a response is contradictory with respect to the pro-

vided sample solution.

This dataset is in English, so we used the English transformer

language model RoBERTa-large-MNLI (Liu et al., 2019) as the basis

for our model. This model was also fine-tuned by Camus and Filigh-

era (2020) to achieve (to our best knowledge) state-of-the-art

results for this data set and is equal in size and architecture to

GBERT-large, which means that all adjustments we made to the

GBERT models should translate. However, as multitask learning did

not apply to this data set, we used a single classification layer and

not multiple ones. Nevertheless, scalar mixing, mean pooling, and

dropout were used similarly for the model. Table 7 shows the corre-

sponding evaluation results:

Especially for the unseen questions subset, our model could

achieve significant improvements over past approaches while per-

forming only worse in the unseen responses category. This can dem-

onstrate that our adjustments to the transformer-based models were

reasonable. Incorporating scalar mixing and mean pooling into the

models could help them achieve (to our best knowledge) state-of-the-

art results for the unseen questions- and unseen domains subsets of

SciEntsBank 3-way and thus seem to be an improvement over the

standard transformer architectures used by Camus and Filighera

(2020) and Sung et al. (2019). In particular, these results suggest that

our adjustments could improve the cross-domain transfer capabilities

of transformer language models. However, this claim would need to

be further evaluated using more specific datasets, which is out of the

scope of this work.

5.2 | Descriptive accuracy

5.2.1 | Feature importance and learned shortcuts

In the next steps, we addressed the descriptive accuracy of our models.

To analyze the contribution of the various features for the different

models, we computed their importance scores for each code. This was

conducted in the same 5�5 cross-validation setup as used during the

previous evaluation steps. Importance scores were then averaged over

all folds. For the regression-based models, the scores were simply given

through the respective coefficients, while for the explainable boosting

machines, these were determined through the different scoring functions

and their possible contributions. For random forests, the mean decrease

in impurity and, for the decision trees, Gini importance were used to

acquire feature importance scores. The transformer-based models are

omitted as they do not operate on the same features as the other

models. The scores were normalized. Figure 7 shows the distribution of

feature importance scores for the different feature categories. Individual

feature importance scores were collected for all folds and codes to get a

general overview of the features used by the models.

The figure can reveal that the models make use of the features differ-

ently. For example, for the decision tree-based model, only a limited set of

character and word n-gram features plays a role, while the importance of

all other features is relatively minor, while for the regression and

ensemble-based models more features seem to be of importance. Charac-

ter and word n-grams from the responses were of comparably high impor-

tance for all models, while the ones from prompts and sample solutions

are the least important features across all models. A pattern that is observ-

able across nearly all feature categories across all models is that successful

prediction outcomes seem to depend mainly on a smaller number of

essential features, given that the importance of many features is close to

0 across all models. After taking a close look at the data, we can state that,

F IGURE 5 An example network predicted by one of the decision
tree-based models. The nodes represent different ideas detected in
the constructed responses of a particular student, the edges how
often these co-occurred. The size and color of the nodes indicate
their degree (the darker and smaller the node/edge, the lower the
degree/the number of co-occurrences).

TABLE 6 This table shows the mean Euclidean distance, max
Euclidean distance, and the percentage of complete matches between
predicted and gold standard networks

Model
Mean
Euclidean

Max
Euclidean

Percentage of
complete Matches

Multitask-GBERT-

large

0.821 7.874 54.14

Multitask-GBERT-

base

0.836 7.874 53.95

Random Forests 0.960 7.874 50.86

Explainable

Boosting Machine

0.992 8.246 49.67

Logistic Regression 1.086 7.874 45.65

Ridge Regression 1.134 9.434 42.89

Decision Tree 1.326 8.660 36.77

Note: Bold refers to the best result within a category.
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for the most part, the important features stem from expectable words, for

example, the word Spannung (voltage) as evidence for Electric Indicator, or

umwandeln (transform) for Transformation Process, although words beyond

these also play a role. Part-of-speech and dependency tags are important

for the regression models and explainable boosting machines but less so

for decision trees and random forests. The similarity score-based features

are of higher importance for the random forests and explainable boosting

machine models than for the others. Out of these scores, especially the

fastText-based ones seemed to be informative for the models. In general,

it can be stated that features from different categories contain signals

which turned out useful for positive classification outcomes.

In the next step, we manually inspected the most important fea-

tures by hand to identify if the models had learned undesired short-

cuts (Geirhos et al., 2020). For feature-based models, we could simply

inspect the feature importance lists and then evaluate what words

certain important features stemmed from and if they were coherent

with the coding guidelines, while, for the transformer-based models,

feature importance needed to be assessed through methods for gen-

erating post-hoc explanations. We used the technique of Transformer

Explainability introduced by Chefer et al. (2021), which builds upon a

specialized variant of layer-wise relevancy propagation (Binder

et al., 2016) and gradient-based methods adapted to transformers to

predict importance scores for individual words in test sentences. By

assembling these importance scores and their distribution for the dif-

ferent words within the whole data set, it is possible to get an over-

view of important terms for positive classification outcomes in most

contexts. We ran this method in 5�5 cross-validation to inspect what

words the models considered important over multiple different folds.

From these runs, we calculated the overall distribution of importance

for the different words encountered in the data set. We then ranked

these words to acquire lists of the most important words for each

idea. Figure 8 illustrates exemplarily how word importance can be dis-

tributed over a single input response for transformer models.

Inspecting the most important features for all different models,

we could then reveal a small set of impactful shortcuts all of them had

picked up. Table 8 shows words that we identified as these undesired

shortcuts within respective categories (Geirhos et al., 2020).

All the words listed were among the top 20 most important fea-

tures for the respective codes for both feature-based and

transformer-based models. Especially for Radiant Indicator and Energy,

Electric Energy and Transformation Process, these were similar words,

namely the respective energy forms and the word umwandeln (trans-

form). As the items from the dataset deal with energy transformation,

it is expectable from a statistical point of view that words referring to

different forms of energy co-occur in the responses, but the fact that

these co-occurrences result in shortcuts is still undesirable.

F IGURE 6 This figure illustrates the distributions of Euclidean distances between predicted and gold standard networks. The upper bar marks
the maximum Euclidean distance, the middle bar is the mean, and the lower bar is the minimum.

TABLE 7 Weighted F1 scores for the SciEntsBank 3-way dataset.
Unseen responses refer to responses to open-ended tasks contained
in the training data, unseen questions to responses whose open-
ended tasks were not encountered, and unseen domains to responses
where the open-ended tasks were not encountered during training
and stem from different domains

Model
Unseen
Responses

Unseen
Questions

Unseen
Domains

RoBERTa-large-MNLI +

Scalar Mixing + Mean

Pooling + Dropout (ours)

77.2 73.8 73.2

Camus and Filighera (2020) 78.8 66.4 71.8

Sung et al. (2019) 75.8 64.8 63.4

Saha et al. (2018) 71.4 62.8 61.2
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5.2.2 | Occlusion analysis

We used the human-coded evidence spans to analyze if models car-

ried out their predictions for similar reasons as humans. For this

purpose, we occluded the data in two ways. On the one hand, we

generated versions of the dataset with the human-coded evidence

spans masked within the responses for each label. On the other hand,

we generated versions where all parts of the answers except these

F IGURE 7 This figure shows violin plots visualizing the distribution of feature importance for the different models and feature categories.
Ranges are set according to the ranges of feature importance the different models produce, ergo to a range of 0.0 to 1.0 for the tree- and
ensemble models, �1.0 to 1.0 for the regression-based models.

F IGURE 8 Importance scores of the
different tokens of an example sentence taken
from the data set for the idea Electric

Indicator. For better visibility of the model's
important words, we subtracted the mean
importance from all individual scores and
set all resulting scores below zero to zero.
(Translation: Outside, a higher voltage was
measured than in front of the window. At the
window, much higher values than in the
middle of the room).
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spans were masked. If models trained on the regular data set match

human coders and are forwarded the prior, their predictive accuracy

should drastically decrease, while, for the latter, it should stay rela-

tively equal and only get decreased to minor degrees. Therefore, we

measured the decrease in true positives compared to the regular

inputs for both cases to assess how much positive classification out-

comes depended on the human-coded evidence. We carried out

respective analyzes for all the models in a 5�5 cross-validation setup.

Table 9 shows the individual results:

This revealed that masking the evidence spans affected models

more than masking everything except them, demonstrating that they

seem to be overall important for the models. The decision tree- and

transformer-based models were the most affected by masking the evi-

dence spans, while the explainable boosting machine models were

affected the least, which implies that, for these models, the evidence

spans were the most important. The models that could deal best with

masking everything except the evidence were the regression- and

transformer-based ones. It seems as if the transformer-based models

seem to be the overall truest to human coding, although this differs

from idea to idea. On the other hand, the Explainable Boosting

Machines differed the most from human coders. However, the percent-

age of true positives turned into false negatives varies tremendously

TABLE 8 Words that we identified as shortcuts the models had learned for the different codes. These had high feature importance for all
models, and usually, the presence of one of these words led to a positive classification outcome for the respective class, even though these words
should not be responsible for the latter

Electric energy
Electric
indicator Thermal energy

Thermal
indicator

Transformation
process Radiant energy Radiant indicator

Shortcut

words

Strahlungsenergie

(radiant energy)

umgewandelt

(transformed)

— Strahlungsenergie

(radiant energy)

— Elektrische energie

(electric energy)

Elektrische energie

(electric energy)

Elektrische energie

(electric energy)

umgewandelt

(transformed)

TABLE 9 The percentages of true positives turned into false negatives by masking human-coded evidence and everything except for it per
model and code. The upper section of the table shows the prior, while the lower section shows the latter

Percentage of true positives which turned into false negatives through masking evidence spans

Model

Electric

energy

Electric

indicator

Thermal

energy

Thermal

indicator

Transformation

process

Radiant

energy

Radiant

indicator Mean

Decision Tree 80.09 61.92 77.47 44.21 81.85 70.19 39.78 65.07

Multitask-GBERT-

large

68.79 52.17 67.37 47.82 84.71 66.41 67.73 65.00

Multitask-GBERT-

base

62.85 47.27 66.73 40.02 85.37 68.48 66.94 62.52

Logistic Regression 80.83 46.57 71.71 27.16 86.07 65.04 46.97 60.62

Ridge Regression 72.70 49.44 66.43 33.48 81.35 64.94 41.69 58.58

Random Forests 88.34 56.53 80.49 14.91 88.03 45.60 34.18 58.29

Explainable Boosting

Machines

80.49 47.30 78.85 25.83 86.37 44.33 32.23 56.49

Percentage of true positives which turned into false negatives through masking everything except the evidence spans

Model
Electric
energy

Electric
indicator

Thermal
energy

Thermal
indicator

Transformation
process

Radiant
energy

Radiant
indicator Mean

Ridge Regression 13.56 25.67 15.07 28.01 6.85 10.53 13.23 16.13

Logistic Regression 11.61 26.29 20.65 27.08 11.13 10.67 9.22 16.67

Multitask-GBERT-

large

16.47 22.97 30.41 27.27 8,48 14.61 3.19 17.63

Multitask-GBERT-

base

17.63 24.63 26.36 32.47 10.04 15.90 3.77 18.69

Decision Tree 15.87 18.44 39.84 29.31 19.80 22.52 15.95 23.10

Random Forests 13.38 26.95 32.46 55.20 28.12 20.29 4.81 25.88

Explainable Boosting

Machines

17.24 39.51 28.67 44.15 23.50 22.27 6.64 26.00
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for the different codes and models, and, in general, only up to roughly

two-thirds of the true positives were rendered false negatives by mask-

ing the evidence spans.

For this reason, responses seem to contain signals ranging beyond

the human-coded evidence, which can lead to successful prediction

outcomes. This could be caused by features that are likely to co-occur

with respective evidence. Following the distributional-semantic notion

that similar words appear in similar contexts (Firth, 1957), it is expect-

able that contexts of evidence spans are similar to each other and,

therefore, contain similar signals across responses, which the models

can then use. On the other hand, this could also result from less

apparent shortcuts within the models that we did not manage to

detect. The regression- and transformer-based models seem to be the

overall least affected by these signals, as indicated by the reduction in

true positives for masking everything except the evidence spans.

6 | DISCUSSION

We assessed to which degree techniques used for automatic con-

structed response assessment can be applied to automate the coding

of core ideas from the domain of energy physics in constructed

responses. We implemented multiple systems based on transformer

language models and five different feature-based classification algo-

rithms. For the latter, we built a shared feature set inspired by past

work on automatic constructed response assessment exclusively from

interpretable features. All models achieved high macro F1 scores

(90.98 resp. 90.19 for the best transformer-based variant; 86.15

resp. 86.96 for the best feature-based approaches) and overall high

F1 scores for all codes, indicating that they can indeed be applied for

automating the coding process. Moreover, we implemented two

keyword-based baselines, which performed better than random but

worse than the machine learning models. We also evaluated to which

degree co-occurrence-based knowledge networks generated for stu-

dents from the co-occurrence of codes in their responses matched

networks derived from a human-coded gold standard. As expectable

from the results of the previous evaluation step, the transformer-

based models also turned out as the most appropriate models for gen-

erating respective networks as they came closest to the gold standard

networks. However, only 54.14% of the networks generated were a

complete match. Therefore, in response to RQ1 (the question of

whether it is feasible to code core ideas of energy physics in con-

structed responses) and RQ2 (the question of what trade-off between

transformer-based models and explainable feature-based models is to

be made concerning predictive accuracy in this context), it can be

stated that the methods we applied were overall successful in detect-

ing the ideas within individual responses. However, there is room for

further improvement in how well this translates into knowledge net-

works, and it is necessary to explore further methodology for con-

structing the latter. Concerning RQ2, it can be stated that the

transformer-based models achieved an overall superior predictive per-

formance. The approach used by us also seems to be applicable to

other data, as we could use a similar model to achieve state-of-the-art

results in two out of three evaluation categories from the SciEntsBank

3-Way dataset. However, as transformers are, by far, more heavy-

weight in terms of pure resource consumption than feature-based

models, it is debatable if they are needed in all cases (Bender

et al., 2021). Of course, also the achieved F1 scores leave room for

some future improvements.

We then analyzed the models for their descriptive accuracies to

address RQ3 (the question of the trade-offs between transformer-

based and explainable feature-based models) and RQ4 (whether the

models consider similar signals as important as human coders). First,

we inspected the distribution of feature importance for the different

feature-based models. This could reveal that a limited set of essential

features were mainly responsible for positive classification outcomes

for most models. Most of the features were of comparably minor

importance. However, the important features were still distributed

differently for different feature categories and models. While the

character and word n-gram features were important for all models,

the distance metrics were only of higher relevance to the ensemble

models.

We also inspected the feature importance scores to reveal unde-

sired shortcuts (Geirhos et al., 2020) among the models' learned fea-

tures. For the black box transformer-based approaches, we could

successfully apply the method introduced by Chefer et al. (2021) to

glass box these models and acquire importance scores for individual

words within responses. Our analysis could reveal that all models had

picked up one major variant of shortcuts where words referring to

certain energy forms were undesirably important for predicting codes

corresponding to other energy forms. This issue was present for both

feature- and transformer-based models and stemmed from the issue

that respective words co-occurred with important evidence words in

individual responses. Additional data that balances out these co-

occurrences would be needed to fix this issue. Concerning RQ3, it can

be stated that shortcut learning affected both transformers and

feature-based models.

Following this, we inspected to what extent the models consid-

ered similar evidence as important as human coders to address RQ4.

For this purpose, we created two perturbated versions of the data set.

In the first of these versions, we masked human-coded evidence in

the responses and everything except it in the second version. We

then measured the percentage of true positives turned into false neg-

atives through these perturbations for both datasets. Overall, masking

human-coded evidence impacted results stronger than masking every-

thing except it, which shows that the models picked up on overall

plausible signals. The decision tree- and transformer-based models

were affected by masking human evidence the most, indicating that

they rely on similar signals as humans for their predictions. On the

other hand, the regression-based models were the least affected by

masking everything around human-coded evidence. For different

ideas, the human-coded evidence spans seem to be of varying impor-

tance for the models, and there seem to be features beyond these

spans, which also affect prediction outcomes, but nonetheless, the

models consider evidence also considered important by humans as

more important than other parts of the responses.

782 GOMBERT ET AL.

 13652729, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jcal.12767 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [12/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



It is important to remark that education is highly contextual. For

this reason, the performance of our models might not translate well to

use cases beyond the ones intended by us. It is unlikely that the

models trained by us can be used for data from other assessments

without retraining them with appropriate data. Nonetheless, our

results confirm the findings from Sung et al. (2019) and Camus and

Filighera (2020) that transformers seem to be a promising choice for

implementing response coding systems. These results are also in line

with general developments in NLP, where transformers could be used

to achieve significant progress for a wide range of problems

(e.g., Rogers et al., 2020). Moreover, as the changes we made to the

architecture of our transformers compared to the default setup led to

superior evaluation results on the dataset they used, it can be stated

that these were reasonable.

7 | CONCLUSION

In this article, we approached the automated coding of seven ideas

related to energy manifestation and transformation in the constructed

responses of 305 K-12 students to a total of 38 constructed response

items. We solved this task by applying machine learning methodology

for automated constructed response assessment. Our approaches

yielded fruitful outcomes, although there are some limitations, espe-

cially regarding the successful translation of single codes into accurate

knowledge networks. Furthermore, to comply with Slade and Tait

(2019) and the demands of Trusted Learning Analytics (Drachsler &

Greller, 2016), we also addressed the topic of model explainability. We

found out all approaches picked up on mainly plausible features, but

unfortunately, the models also picked up on some undesired shortcuts.

Furthermore, the features deemed important by our models generally

matched with human-coded evidence, although the responses seem to

contain features beyond these which also impact classification results.

8 | FUTURE WORK

Our next steps will involve applying the demonstrated methods to

new, unseen learner data to study the development of the corre-

sponding knowledge networks. Comparing such networks to network

representations of the knowledge structure contained in instructional

materials (Christianson et al., 2020) could provide a basis for effi-

ciently identifying gaps in students' knowledge, giving feedback, and

planning future instruction. Besides this, future work on related cod-

ing systems could target implementing systems that are not solely

trained for a pre-defined set of fixed codes but approach the subject

more broadly. For example, more generalizable architectures that

learn to predict if an input text entails unseen input ideas are imagin-

able. This would allow studying students' knowledge networks and

how they develop without coding datasets for specific didactic areas.

However, for creating such models, one likely needs to train them on

larger, more diverse datasets that address ideas from many different

areas to guarantee a successful regularization.
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