Suche

Erweiterte Literatursuche

Ariadne Pfad:

Inhalt

Detailanzeige

Aufsatz (Zeitschrift) zugänglich unter
URN:
DOI:
Titel
Epistemic network analyses of economics students' graph understanding. An eye-tracking study
Autoren ; GND-ID ORCID; GND-ID ORCID; GND-ID ORCID
OriginalveröffentlichungSensors 20 (2020) 23, 33 S. ZDB
Dokument  (6.125 KB)
Lizenz des Dokumentes Lizenz-Logo 
Schlagwörter (Deutsch)Diagramm; Verstehen; Erkenntnis; Student; Hochschule; Wirtschaftswissenschaften; Physik; Netzwerkanalyse; Erkenntnistheorie; Augenbewegung; Bewegungsanalyse; Datenanalyse; Deutschland
TeildisziplinEmpirische Bildungsforschung
DokumentartAufsatz (Zeitschrift)
ISSN1424-8220
SpracheEnglisch
Erscheinungsjahr
BegutachtungsstatusPeer-Review
Abstract (Englisch):Learning to solve graph tasks is one of the key prerequisites of acquiring domain-specific knowledge in most study domains. Analyses of graph understanding often use eye-tracking and focus on analyzing how much time students spend gazing at particular areas of a graph-Areas of Interest (AOIs). To gain a deeper insight into students' task-solving process, we argue that the gaze shifts between students' fixations on different AOIs (so-termed transitions) also need to be included in holistic analyses of graph understanding that consider the importance of transitions for the task-solving process. Thus, we introduced Epistemic Network Analysis (ENA) as a novel approach to analyze eye-tracking data of 23 university students who solved eight multiple-choice graph tasks in physics and economics. ENA is a method for quantifying, visualizing, and interpreting network data allowing a weighted analysis of the gaze patterns of both correct and incorrect graph task solvers considering the interrelations between fixations and transitions. After an analysis of the differences in the number of fixations and the number of single transitions between correct and incorrect solvers, we conducted an ENA for each task. We demonstrate that an isolated analysis of fixations and transitions provides only a limited insight into graph solving behavior. In contrast, ENA identifies differences between the gaze patterns of students who solved the graph tasks correctly and incorrectly across the multiple graph tasks. For instance, incorrect solvers shifted their gaze from the graph to the x-axis and from the question to the graph comparatively more often than correct solvers. The results indicate that incorrect solvers often have problems transferring textual information into graphical information and rely more on partly irrelevant parts of a graph. Finally, we discuss how the findings can be used to design experimental studies and for innovative instructional procedures in higher education. (DIPF/Orig.)
zusätzliche URLsDOI: 10.3390/s20236908
StatistikAnzahl der Zugriffe auf dieses Dokument Anzahl der Zugriffe auf dieses Dokument
PrüfsummenPrüfsummenvergleich als Unversehrtheitsnachweis
Eintrag erfolgte am04.01.2022
QuellenangabeBrückner, Sebastian; Schneider, Jan; Zlatkin-Troitschanskaia, Olga; Drachsler, Hendrik: Epistemic network analyses of economics students' graph understanding. An eye-tracking study - In: Sensors 20 (2020) 23, 33 S. - URN: urn:nbn:de:0111-pedocs-232289 - DOI: 10.25656/01:23228
Dateien exportieren

Inhalt auf sozialen Plattformen teilen (nur vorhanden, wenn Javascript eingeschaltet ist)